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Abstract: This paper extends the former approaches to describe the stability of n-dimensional linear
time-invariant systems via the torsion τ(t) of the state trajectory. For a system ṙ(t) = Ar(t) where
A is invertible, we show that (1) if there exists a measurable set E1 with positive Lebesgue measure,
such that r(0) ∈ E1 implies that lim

t→+∞
τ(t) 6= 0 or lim

t→+∞
τ(t) does not exist, then the zero solution of

the system is stable; (2) if there exists a measurable set E2 with positive Lebesgue measure, such that
r(0) ∈ E2 implies that lim

t→+∞
τ(t) = +∞, then the zero solution of the system is asymptotically stable.

Furthermore, we establish a relationship between the ith curvature (i = 1, 2, · · · ) of the trajectory
and the stability of the zero solution when A is similar to a real diagonal matrix.
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1. Introduction

It is well known that Lyapunov [1] laid the foundation of stability theory. Linear systems are the
most basic and widely used research objects, which have been developed for a long period. However, the
traditional methods rely heavily on linear algebra. There are few results obtained from geometric aspects.

Curvature and torsion are important concepts in differential geometry. In [2], the authors calculated
the curvature and torsion of the state trajectories r(t) of the two- and three-dimensional linear time-
invariant systems ṙ(t) = Ar(t), which are related to the system stability. Furthermore, in [3] the authors
use the definition of higher curvatures of curves in Rn given in [4] to obtain the relationship between
the first curvature of the state trajectory and the stability of the n-dimensional linear system.

In this paper, we will describe the stability of the zero solutions of linear time-invariant systems
in arbitrary dimension by using the torsion, namely, the second curvature.

Our main results are as follows.

Theorem 1. Suppose that ṙ(t) = Ar(t) is a linear time-invariant system, where A is similar to an n× n real
diagonal matrix, r(t) ∈ Rn, and ṙ(t) is the derivative of r(t). Denote by κi(t) (i = 1, 2, · · · ) the ith curvature
of trajectory of a solution r(t). We have

(1) if there exists a measurable set E ⊆ Rn whose Lebesgue measure is greater than 0, such that r(0) ∈ E
implies that lim

t→+∞
κi(t) 6= 0 or lim

t→+∞
κi(t) does not exist, then the zero solution of the system is stable;

(2) if A is invertible, then under the assumptions of (1), the zero solution of the system is asymptotically
stable.

Theorem 2. Suppose that ṙ(t) = Ar(t) is a linear time-invariant system, where A is an n× n invertible real
matrix, and r(t) ∈ Rn. Denote by τ(t) the torsion of trajectory of a solution r(t). We have
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(1) if there exists a measurable set E1 ⊆ Rn whose Lebesgue measure is greater than 0, such that r(0) ∈ E1

implies that lim
t→+∞

τ(t) 6= 0 or lim
t→+∞

τ(t) does not exist, then the zero solution of the system is stable;

(2) if there exists a measurable set E2 ⊆ Rn whose Lebesgue measure is greater than 0, such that r(0) ∈ E2

implies that lim
t→+∞

τ(t) = +∞, then the zero solution of the system is asymptotically stable.

The paper is organized as follows. In Section 2, we review some basic concepts and propositions.
In Section 3, we study the relationship between the ith curvature (i = 1, 2, · · · ) of the trajectory and
the stability of the zero solution of the system when the system matrix is similar to a real diagonal
matrix, and we prove Theorem 1. In Section 4, we establish a relationship between the torsion of the
trajectory and the stability of the zero solution of the system, and complete the proof of Theorem 2.
Two examples are given in Section 5. Finally, Section 6 concludes the paper.

2. Preliminaries

Throughout this paper, all vectors will be written as column vectors, and ‖x‖ will denote the

Euclidean norm of x = (x1, x2, · · · , xn)T ∈ Rn, namely, ‖x‖ =
√

∑n
i=1 x2

i . The vector r(i)(t) denotes
the ith derivative of vector r(t). We denote by det A the determinant of matrix A. The eigenvalues of
matrix A are denoted by λi(A) (i = 1, 2, · · · , n), and the set of eigenvalues of matrix A is denoted by
σ(A). The degree of polynomial f (t) is denoted by deg( f (t)).

2.1. Stability of Linear Time-Invariant Systems

Definition 1 ([5]). The system of ordinary differential equations

ṙ(t) = Ar(t) (1)

is called a linear time-invariant system, where A is an n× n real constant matrix, r(t) ∈ Rn, and ṙ(t) is the
derivative of r(t).

Proposition 1 ([5]). The initial value problem{
ṙ(t) = Ar(t),

r(0) = r0,
(2)

has a unique solution given by

r(t) = etAr0, (3)

where etA = ∑∞
k=0

tk Ak

k! .
The curve r(t) is called the trajectory of the system (2) with the initial value r0 ∈ Rn.

Definition 2 ([6,7]). The solution r(t) ≡ 0 of differential equations (1) is called the zero solution of the linear
time-invariant system. If for every constant ε > 0, there exists a δ = δ(ε) > 0, such that ‖r(0)‖ < δ implies
that ‖r(t)‖ < ε for all t ∈ [0,+∞), where r(t) is a solution of (1), then we say that the zero solution of
system (1) is stable. If the zero solution is not stable, then we say that it is unstable.

Suppose that the zero solution of system (1) is stable, and there exists a δ̃ (0 < δ̃ 6 δ), such that ‖r(0)‖ < δ̃

implies that lim
t→+∞

r(t) = 0, then we say that the zero solution of system (1) is asymptotically stable.

Proposition 2 ([6]). The zero solution of system (1) is stable if and only if all eigenvalues of matrix A have
nonpositive real parts and those eigenvalues with zero real parts are simple roots of the minimal polynomial of A.

The zero solution of system (1) is asymptotically stable if and only if all eigenvalues of matrix A have
negative real parts, namely, Re{λi(A)} < 0 (i = 1, 2, · · · , n).
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Proposition 3 ([6]). Suppose that A and B are two n× n real matrices, and A is similar to B, namely, there
exists an n× n real invertible matrix P, such that A = P−1BP. For system (1), let v(t) = Pr(t). Then the
system after the transformation becomes

v̇(t) = Bv(t). (4)

System (4) is said to be equivalent to system (1), and v(t) = Pr(t) is called an equivalence transformation.

Proposition 4 ([6]). Let A and B be two n× n real matrices, and A is similar to B. Then the zero solution of
the system ṙ(t) = Ar(t) is (asymptotically) stable if and only if the zero solution of the system v̇(t) = Bv(t) is
(asymptotically) stable.

2.2. Curvatures of Curves in Rn

Definition 3 ([8]). Let r : [0,+∞)→ R3 be a smooth curve. The functions

κ(t) =
‖ṙ(t)× r̈(t)‖
‖ṙ(t)‖3 , τ(t) =

(ṙ(t), r̈(t),
...
r (t))

‖ṙ(t)× r̈(t)‖2

are called the curvature and torsion of the curve r(t), respectively.

Gluck [4] gave a definition of higher curvatures of curves in Rn, which is a generalization of
curvature and torsion. Here we omit the definition of higher curvatures and review their calculation
formulas directly.

In this paper, Vi(t) denotes the i-dimensional volume of the i-dimensional parallelotope with
vectors ṙ(t), r̈(t), · · · , r(i)(t) as edges, and we have a convention that V0(t) = 1.

Proposition 5 ([4]). Let r : [0,+∞) → Rn be a smooth curve, and ṙ(t) 6= 0 for all t ∈ [0,+∞). Suppose
that for each t ∈ [0,+∞), the vectors ṙ(t), r̈(t), · · · , r(m)(t) (m 6 n) are linearly independent. Then the ith
curvature of a curve r(t) is

κi(t) =
Vi−1(t)Vi+1(t)

V1(t)V2
i (t)

(i = 1, 2, · · · , m− 1).

In [4], according to the definition of the curvatures of curves in Rn, we have κi(s) > 0 for
i = 1, 2, · · · , m− 1.

If r(t) is a smooth curve in R3, and ṙ(t), r̈(t),
...
r (t) are linearly independent, then we have

Frenet-Serret formulas (cf. [8]), where κ1(s) = κ(s), and κ2(s) = |τ(s)|, which means the first and
second curvature are the generalization of curvature and torsion of curves in R3, respectively. In the
remainder of this paper, we use κ(t) instead of κ1(t), and τ(t) instead of κ2(t), for simplicity.

We can give Vi(t) by the derivatives of r(t) with respect to t. In fact, we have the following result.

Proposition 6 ([3]). Write r(i)(t) =
(

r(i)1 (t), r(i)2 (t), · · · , r(i)n (t)
)T

. We have

V2
k (t) = ∑

16i1<i2<···<ik6n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ṙi1(t) r̈i1(t) · · · r(k)i1
(t)

ṙi2(t) r̈i2(t) · · · r(k)i2
(t)

...
...

. . .
...

ṙik (t) r̈ik (t) · · · r(k)ik
(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

.
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By Proposition 5 and Proposition 6, we obtain the expression of each curvature of curve r(t) in Rn

by the coordinates of derivatives of r(t). In particular, if ṙ(t) and r̈(t) are linearly independent, then
the torsion of r(t) satisfies

τ(t) =
V3(t)
V2

2 (t)
=

√√√√√√√√√∑16i<j<k6n

∣∣∣∣∣∣∣∣∣∣
ṙi(t) r̈i(t)

...
r i(t)

ṙj(t) r̈j(t)
...
r j(t)

ṙk(t) r̈k(t)
...
r k(t)

∣∣∣∣∣∣∣∣∣∣

2

∑16p<q6n

∣∣∣∣∣∣
ṙp(t) r̈p(t)

ṙq(t) r̈q(t)

∣∣∣∣∣∣
2 . (5)

On the other hand, if V2(t) ≡ 0, namely ṙ(t) and r̈(t) are linearly dependent for all t, then obviously we
have the convention that τ(t) ≡ 0. Further, the function V2(t) will be examined in detail in Section 4.2.

2.3. Relationship Between the Curvatures of Two Equivalent Systems

Wang et al. [3] establish a relationship between the curvatures of the trajectories of two equivalent
systems. In fact, let a curve r(t) be the trajectory of system (2), and suppose that for each t, the vectors
ṙ(t), r̈(t), · · · , r(m)(t) are linearly independent. Then we can define curvatures κr,1(t), κr,2(t), · · · , κr,m−1(t)
of the curve r(t), and we have the following result.

Proposition 7 ([3]). Suppose that a linear time-invariant system ṙ(t) = Ar(t) is equivalent to a system
v̇(t) = Bv(t), where A = P−1BP, and v(t) = Pr(t) is the equivalence transformation. Let κr,i(t) and κv,i(t)
be the ith (i = 1, 2, · · · , m− 1) curvatures of trajectories r(t) and v(t), respectively. Then we have

lim
t→+∞

κr,i(t) = 0 ⇐⇒ lim
t→+∞

κv,i(t) = 0,

lim
t→+∞

κr,i(t) = +∞ ⇐⇒ lim
t→+∞

κv,i(t) = +∞,

κr,i(t) is a bounded function ⇐⇒ κv,i(t) is a bounded function.

2.4. Real Jordan Canonical Form

Proposition 8 ([7,9]). Let A be an n× n real matrix. Then A is similar to a block diagonal real matrix

Cn1(a1, b1)

Cn2(a2, b2)
. . .

0

Cnp(ap, bp)

0
Jnp+1(λp+1)

. . .
Jnr (λr)


, (6)

where
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(1) for k ∈ {1, 2, · · · , p}, the numbers λk = ak +
√
−1bk and λ̄k = ak −

√
−1bk (ak, bk ∈ R, and bk >

0) are complex eigenvalues of A, and

Cnk (ak, bk) =



Λk I2

Λk I2

Λk
. . .
. . . I2

Λk


2nk×2nk

,

where Λk =

(
ak bk
−bk ak

)
, I2 =

(
1 0
0 1

)
;

(2) for j ∈ {p + 1, p + 2, · · · , r}, the number λj is a real eigenvalue of A, and

Jnj(λj) =



λj 1

λj 1

λj
. . .
. . . 1

λj


nj×nj

.

The matrix (6) is called the real Jordan canonical form of A.

3. Real Diagonal Matrix

In this section, we study the case that the system matrix is similar to a real diagonal matrix, and
prove Theorem 1. From Proposition 4 and Proposition 7, we only need to focus on the case that A is a
real diagonal matrix, and prove Proposition 9.

In what follows, we defind a subset of Rn that

S =

{
r(0)

∣∣∣∣∣r(0) = (r1(0), r2(0), · · · , rn(0))T ∈ Rn, s.t.
n

∏
i=1

ri(0) 6= 0

}
.

Proposition 9. Suppose that ṙ(t) = Ar(t) is a linear time-invariant system, where A is an n× n real diagonal
matrix, and r(t) ∈ Rn. Denote by κi(t) (i = 1, 2, · · · ) the ith curvature of trajectory of a solution r(t). Then
for any given initial value r(0) ∈ S, we have

(1) if lim
t→+∞

κi(t) 6= 0 or lim
t→+∞

κi(t) does not exist, then the zero solution of the system is stable;

(2) if A is invertible, and lim
t→+∞

κi(t) 6= 0 or lim
t→+∞

κi(t) does not exist, then the zero solution of the system

is asymptotically stable.

Wang et al. [3] has proved the case of i = 1. Now we give a complete proof of this proposition.

Proof. (1) Suppose that A is an n× n real diagonal matrix, namely,

A = diag{λ1, λ2, · · · , λn}.

Then

Ak = diag{λk
1, λk

2, · · · , λk
n}, etA = diag{eλ1t, eλ2t, · · · , eλnt},
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where p = 1, 2, · · · . Hence we have

r(t) = etAr(0) =
(

eλ1tr1(0), eλ2tr2(0), · · · , eλntrn(0)
)T

,

ṙ(t) = Ar(t) =
(

λ1eλ1tr1(0), λ2eλ2tr2(0), · · · , λneλntrn(0)
)T

,

· · · · · · ,

r(k)(t) = Akr(t) =
(

λk
1eλ1tr1(0), λk

2eλ2tr2(0), · · · , λk
neλntrn(0)

)T
,

namely, the coordinates of derivatives of r(t) are

ṙi(t) = λieλitri(0), · · · · · · , r(k)i (t) = λk
i eλitri(0) (i = 1, 2, · · · , n).

Then by Proposition 6, we obtain

V2
k (t) = ∑

16i1<i2<···<ik6n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ṙi1(t) r̈i1(t) · · · r(k)i1
(t)

ṙi2(t) r̈i2(t) · · · r(k)i2
(t)

...
...

. . .
...

ṙik (t) r̈ik (t) · · · r(k)ik
(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

= ∑
16i1<i2<···<ik6n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λi1eλi1
tri1(0) λ2

i1
eλi1

tri1(0) · · · λk
i1

eλi1
tri1(0)

λi2eλi2 tri2(0) λ2
i2

eλi2 tri2(0) · · · λk
i2

eλi2 tri2(0)

...
...

. . .
...

λik eλik
trik (0) λ2

ik
eλik

trik (0) · · · λk
ik

eλik
trik (0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

= ∑
16i1<i2<···<ik6n


e
(

∑k
p=1 λip

)
t

k

∏
q=1

(
λiq riq(0)

)
∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λi1 λ2
i1
· · · λk−1

i1

1 λi2 λ2
i2
· · · λk−1

i2

...
...

...
. . .

...

1 λik λ2
ik
· · · λk−1

ik

∣∣∣∣∣∣∣∣∣∣∣∣∣



2

= ∑
16i1<i2<···<ik6n

e2
(

∑k
p=1 λip

)
t
{

k

∏
q=1

(
λiq riq(0)

)
∏

16α<β6k

(
λiβ
− λiα

)}2

. (7)

We see that if the eigenvalues λi1 , λi2 , · · · , λik of A are non-zero and distinct, then a term of the

form Ce2
(

∑k
p=1 λip

)
t will appear in the expression of V2

k (t), where C is a constant depending on the
eigenvalues and initial value, and C > 0.

By Proposition 5, the square of the ith curvature is

κ2
i (t) =

V2
i−1(t)V

2
i+1(t)

V2
1 (t)V

4
i (t)

(i = 1, 2, · · · , m− 1). (8)
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Now, we consider the limit of κi(t) as t→ +∞ by comparing the exponents of e in the numerator and
denominator of κ2

i (t). Let ∆1 and ∆2 denote the maximum values of α in the terms of the form eαt in
V2

i−1(t)V
2
i+1(t) and V2

1 (t)V
4
i (t), respectively. We define

λ(1) = max {σ(A)\ {0}} ,

λ(2) = max
{

σ(A)\
{

0, λ(1)

}}
,

· · · · · · ,

λ(i) = max
{

σ(A)\
{

0, λ(1), λ(2), · · · , λ(i−1)

}}
,

· · · · · ·

Then by (7) and (8), we have

∆1 = 2
i−1

∑
a=1

λ(a) + 2
i+1

∑
b=1

λ(b), ∆2 = 2λ(1) + 4
i

∑
c=1

λ(c).

Thus,

∆1 − ∆2 = 2
(

λ(i+1) − λ(1) − λ(i)

)
.

It follows that

lim
t→+∞

κi(t) = 0 ⇐⇒ ∆1 < ∆2 ⇐⇒ λ(1) + λ(i) > λ(i+1),

lim
t→+∞

κi(t) = C ⇐⇒ ∆1 = ∆2 ⇐⇒ λ(1) + λ(i) = λ(i+1),

lim
t→+∞

κi(t) = +∞ ⇐⇒ ∆1 > ∆2 ⇐⇒ λ(1) + λ(i) < λ(i+1), (9)

where C is a positive constant depending on the initial value r(0) = r0 (rj(0) 6= 0 for j = 1, 2, · · · , n).
Here we notice that for any given real diagonal matrix A, if for a given initial value r(0) ∈ Rn that
satisfies ∏n

j=1 rj(0) 6= 0, we have lim
t→+∞

κi(t) = 0 (or +∞, or a constant C > 0, respectively), then for

an arbitrary r(0) ∈ Rn satisfying ∏n
j=1 rj(0) 6= 0, we still have lim

t→+∞
κi(t) = 0 (or +∞, or a constant

C̃ > 0, respectively).
Noting that A is a real diagonal matrix, by Proposition 2, the zero solution of the system (1) is

stable if and only if λi(A) 6 0 (i = 1, 2, · · · , n). If the zero solution of the system is unstable, then
we have λ(1) > 0, thus λ(1) + λ(i) > λ(i+1). By (9), we have lim

t→+∞
κi(t) = 0. In other words, if

lim
t→+∞

κi(t) 6= 0 or lim
t→+∞

κi(t) does not exist, then the zero solution of the system is stable.

(2) Suppose that A is invertible, and lim
t→+∞

κi(t) 6= 0 or lim
t→+∞

κi(t) does not exist. Then 0 is not an

eigenvalue of A, and the zero solution of the system is stable. By Proposition 2, the zero solution of the
system is asymptotically stable.

Now, we proceed to the proof of Theorem 1.

Proof of Theorem 1. Suppose that the linear time-invariant system ṙ(t) = Ar(t) is equivalent to
a system v̇(t) = Bv(t), where B is a real diagonal matrix, A = P−1BP, and v(t) = Pr(t) is the
equivalence transformation. They by Proposition 7, we have

lim
t→+∞

κr,i(t) = 0 ⇐⇒ lim
t→+∞

κv,i(t) = 0. (10)
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We define

S̃ =

{
P−1v(0)

∣∣∣∣∣v(0) = (v1(0), v2(0), · · · , vn(0))T ∈ Rn, s.t.
n

∏
i=1

vi(0) 6= 0

}
.

Note that we can regard any given n× n invertible matrix P as an invertible linear transformation
P : Rn → Rn, and the Lebesgue measure of Rn\S̃ satisfies

m
(
Rn\S̃

)
= 0. (11)

If there exists a measurable set E ⊆ Rn whose Lebesgue measure is greater than 0, such that
r(0) ∈ E implies that lim

t→+∞
κr,i(t) 6= 0 or lim

t→+∞
κr,i(t) does not exist, then by (10) and (11), there exists

a r(0) ∈ S̃, such that the trajectory v(t) with initial value v(0) = Pr(0) satisfies lim
t→+∞

κv,i(t) 6= 0 or

lim
t→+∞

κv,i(t) does not exist. Notice that when r(0) ∈ S̃, the vector v(0) satisfies ∏n
i=1 vi(0) 6= 0, thus

by Proposition 9, the zero solution of the system v̇(t) = Bv(t) is stable, and then by Proposition 4,
the zero solution of the system ṙ(t) = Ar(t) is also stable, which proves Theorem 1 (1).

Since A is similar to B, the matrix A is invertible if and only if B is invertible. The method of the
proof of (1) works for (2), which completes the proof of Theorem 1.

4. Relationship between Torsion and Stability

In this section, we give the proof of Theorem 2, which establishes a relationship between the
torsion of the trajectory and the stability of the zero solution of the system. From Proposition 4, 7, and
8, we only need to focus on the case that A is an invertible matrix in real Jordan canonical form (6),
and prove the following result.

Proposition 10. Suppose that ṙ(t) = Ar(t) is a linear time-invariant system, where A is an n× n invertible
matrix in real Jordan canonical form, and r(t) ∈ Rn. Denote by τ(t) the torsion of trajectory of a solution r(t).
Then for any given initial value r(0) ∈ S, we have

(1) if lim
t→+∞

τ(t) 6= 0 or lim
t→+∞

τ(t) does not exist, then the zero solution of the system is stable;

(2) if lim
t→+∞

τ(t) = +∞, then the zero solution of the system is asymptotically stable.

4.1. Blocks Jp(λ) and Cm(a, b)

In order to study the matrices in real Jordan canonical form (6), we first consider the blocks of
the forms

Jp(λ) =



λ 1

λ 1

λ
. . .
. . . 1

λ


p×p

and Cm(a, b) =



Λ I2

Λ I2

Λ
. . .
. . . I2

Λ


2m×2m

, (12)

where λ, a, b ∈ R, b > 0, and Λ =

(
a b
−b a

)
. Part of this subsection goes back to the work as far as [3].
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(1) For a Jp(λ) block, by direct calculation, we obtain

J2
p(λ) =



λ2 2λ 1

λ2 2λ
. . .

λ2 . . . 1
. . . 2λ

λ2


p×p

, J3
p(λ) =



λ3 3λ2 3λ 1

λ3 3λ2 3λ
. . .

λ3 3λ2 . . . 1

λ3 . . . 3λ
. . . 3λ2

λ3


p×p

, (13)

and we have the exponential function

etJp(λ) = eλt



1 t t2

2!
t3

3! · · · tp−1

(p−1)!

1 t t2

2! · · · tp−2

(p−2)!

1 t · · · tp−3

(p−3)!

. . . . . .
...

1 t

1


. (14)

For the system ṙ(t) = Jp(λ)r(t), by substituting (14) into r(t) = etJp(λ)r(0), we obtain the
expressions of the coordinates of r(t)

rk(t) = eλtPp;k(t) (k = 1, 2, · · · , p), (15)

where the polynomial

Pp;k(t) =
p−k

∑
l=0

rk+l(0)
l!

tl . (16)

Substituting (12) and (13) into r(s)(t) = Js
p(λ)r(t) for s = 1, 2, 3, combined with (15), we see that

the coordinates of the derivatives of r(t) are

ṙk(t) = λrk(t) + rk+1(t) = eλt
{

λPp;k(t) + Pp;k+1(t)
}

,

r̈k(t) = λ2rk(t) + 2λrk+1(t) + rk+2(t) = eλt
{

λ2Pp;k(t) + 2λPp;k+1(t) + Pp;k+2(t)
}

,

...
r k(t) = λ3rk(t) + 3λ2rk+1(t) + 3λrk+2(t) + rk+3(t)

= eλt
{

λ3Pp;k(t) + 3λ2Pp;k+1(t) + 3λPp;k+2(t) + Pp;k+3(t)
}

, (17)

where we have a convention that rk(t) = 0 for k > p.
We see that if k ∈ {1, 2, · · · , p}, then deg(Pp;k(t)) = p− k; if k > p, then Pp;k(t) = 0.
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(2) For a Cm(a, b) block, a direct calculation gives

C2
m(a, b) =



Λ2 2Λ I2

Λ2 2Λ
. . .

Λ2 . . . I2
. . . 2Λ

Λ2


2m×2m

, C3
m(a, b) =



Λ3 3Λ2 3Λ I2

Λ3 3Λ2 3Λ
. . .

Λ3 3Λ2 . . . I2

Λ3 . . . 3Λ
. . . 3Λ2

Λ3


2m×2m

, (18)

where Λ2 =

a2 − b2 2ab

−2ab a2 − b2

, and Λ3 =

 a(a2 − 3b2) b(3a2 − b2)

−b(3a2 − b2) a(a2 − 3b2)

; and we have the

exponential function

etCm(a,b) = eat



R tR t2

2! R t3

3! R · · · tm−1

(m−1)! R

R tR t2

2! R · · · tm−2

(m−2)! R

R tR · · · tm−3

(m−3)! R

. . . . . .
...

R tR

R


, (19)

where R =

 cos bt sin bt

− sin bt cos bt

.

For the system ṙ(t) = Cm(a, b)r(t), write

r(t) = (r1(t), r2(t), · · · , r2m−1(t), r2m(t))T

= (r1,1(t), r1,2(t), r2,1(t), r2,2(t), · · · , rm,1(t), rm,2(t))T.

Substituting (19) into r(t) = etCm(a,b)r(0), we obtain the expressions of the coordinates of r(t)

ri,1(t) = eatTm;i,1(t), ri,2(t) = eatTm;i,2(t) (i = 1, 2, · · · , m), (20)

where 
Tm;i,1(t) =

m−i

∑
k=0

tk

k!
(r2i+2k−1(0) cos bt + r2i+2k(0) sin bt),

Tm;i,2(t) =
m−i

∑
k=0

tk

k!
(−r2i+2k−1(0) sin bt + r2i+2k(0) cos bt).

(21)

By (21), we have

T2
m;1,1(t) + T2

m;1,2(t) =
r2

m,1(0) + r2
m,2(0)

[(m− 1)!]2
t2m−2 +

2m−3

∑
ϕ=0

tϕBϕ(t), (22)

where each Bϕ(t) is a bounded function.
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Substituting (12) and (18) into r(s)(t) = Cs
m(a, b)r(t) for s = 1, 2, 3, combined with (20), we see

that the coordinates of the derivatives of r(t) are

ṙi,1(t) =ari,1(t) + bri,2(t) + ri+1,1(t) = eat {aTm;i,1(t) + bTm;i,2(t) + Tm;i+1,1(t)} ,

ṙi,2(t) =− bri,1(t) + ari,2(t) + ri+1,2(t) = eat {−bTm;i,1(t) + aTm;i,2(t) + Tm;i+1,2(t)} ,

r̈i,1(t) =
(

a2 − b2
)

ri,1(t) + 2abri,2(t) + 2ari+1,1(t) + 2bri+1,2(t) + ri+2,1(t)

=eat
{(

a2 − b2
)

Tm;i,1(t) + 2abTm;i,2(t) + 2aTm;i+1,1(t) + 2bTm;i+1,2(t) + Tm;i+2,1(t)
}

,

r̈i,2(t) =− 2abri,1(t) +
(

a2 − b2
)

ri,2(t)− 2bri+1,1(t) + 2ari+1,2(t) + ri+2,2(t)

=eat
{
−2abTm;i,1(t) +

(
a2 − b2

)
Tm;i,2(t)− 2bTm;i+1,1(t) + 2aTm;i+1,2(t) + Tm;i+2,2(t)

}
,

...
r i,1(t) =a

(
a2 − 3b2

)
ri,1(t) + b

(
3a2 − b2

)
ri,2(t) + 3

(
a2 − b2

)
ri+1,1(t) + 6abri+1,2(t)

+ 3ari+2,1(t) + 3bri+2,2(t) + ri+3,1(t)

=eat
{

a
(

a2 − 3b2
)

Tm;i,1(t) + b
(

3a2 − b2
)

Tm;i,2(t) + 3
(

a2 − b2
)

Tm;i+1,1(t) + 6abTm;i+1,2(t)

+3aTm;i+2,1(t) + 3bTm;i+2,2(t) + Tm;i+3,1(t)} ,

...
r i,2(t) =− b

(
3a2 − b2

)
ri,1(t) + a

(
a2 − 3b2

)
ri,2(t)− 6abri+1,1(t) + 3

(
a2 − b2

)
ri+1,2(t)

− 3bri+2,1(t) + 3ari+2,2(t) + ri+3,2(t)

=eat
{
−b
(

3a2 − b2
)

Tm;i,1(t) + a
(

a2 − 3b2
)

Tm;i,2(t)− 6abTm;i+1,1(t) + 3
(

a2 − b2
)

Tm;i+1,2(t)

−3bTm;i+2,1(t) + 3aTm;i+2,2(t) + Tm;i+3,2(t)} , (23)

where we have a convention that if i > m, then ri,j(t) = 0 (j = 1, 2).
It should be noted that in the following subsections we will consider the case where A has more

than one block of the form Jp(λ) or Cm(a, b), so when Pp;k(t), Tm;i,1(t) and Tm;i,2(t) appear in the
following, the rk+l(0) in (16) should be understood as the coordinate of r(t) which corresponds to
the (k + l)th row of the diagonal block corresponding to the Pp;k(t), and the r2i+2k−1(0) and r2i+2k(0)
in (21) should be understood as the coordinates of r(t) which correspond to the (2i + 2k− 1)th and
(2i + 2k)th row of the diagonal block corresponding to the Tm;i,1(t) and Tm;i,2(t), respectively.

4.2. Function V2(t)

By Proposition 6, we have

V2
2 (t) = ∑

16i<j6n

∣∣∣∣∣∣
ṙi(t) r̈i(t)

ṙj(t) r̈j(t)

∣∣∣∣∣∣
2

. (24)

Considering the form of the expression of torsion τ(t), it is necessary to make a detailed analysis of the
function V2(t).

Lemma 1. Suppose that ṙ(t) = Ar(t) is a linear time-invariant system, where A is an n× n matrix in real
Jordan canonical form, and r(t) ∈ Rn. The function V2(t) is given by (24). Then for any given r(0) ∈ S,
we have
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(1) V2(t) ≡ 0 if and only if

A =


λ

. . .

λ

0z×z

 (λ ∈ R) or A =


J2(0)

. . .

J2(0)

0z×z

 , (25)

where z ∈ {0, 1, · · · , n};
(2) if V2(t) 6≡ 0, then there exists a T > 0, such that V2(t) > 0 for all t > T.

Proof. Suppose A is an n× n matrix in real Jordan canonical form.
(a) If A has a diagonal block Cm(a, b) (without loss of generality, we assume that this Cm(a, b)

block is the first diagonal block of A), then by (20), (22), (23), and the analysis of Section 4.4 of [3],
we have

V2
2 (t) > ∑

16i<j62m

∣∣∣∣∣∣
ṙi(t) r̈i(t)

ṙj(t) r̈j(t)

∣∣∣∣∣∣
2

= e4at

(
Ct4m−4 +

4m−5

∑
ϕ=0

tϕBϕ(t)

)
, (26)

where the constant C =
b2(a2+b2)

2
(r2

m,1(0)+r2
m,2(0))

2

[(m−1)!]4
> 0, and Bϕ(t) (ϕ = 0, 1, · · · , 4m− 5) are bounded

functions. It follows that there exists a T > 0, such that V2
2 (t) > 0 for all t > T.

(b) If A has a diagonal block Jp(λ), where p > 3 or

{
p = 2,

λ 6= 0,
then by (15), (17), and the analysis of

Section 4.2 of [3], we have

∑
16i<j6p

∣∣∣∣∣∣
ṙi(t) r̈i(t)

ṙj(t) r̈j(t)

∣∣∣∣∣∣
2

= e4λt f (t),

where f (t) is a polynomial, and

(b1) if p > 3, then deg( f (t)) =

{
4(p− 2), λ 6= 0,

4(p− 3), λ = 0;
(b2) if p = 2 and λ 6= 0, then f (t) = λ4r4

2(0) > 0.
We see that for both (b1) and (b2), there exists a T > 0, such that f (t) > 0 for all t > T, thus

V2
2 (t) > ∑

16i<j6p

∣∣∣∣∣∣
ṙi(t) r̈i(t)

ṙj(t) r̈j(t)

∣∣∣∣∣∣
2

= e4λt f (t) > 0 (27)

for all t > T.
(c) If A has J1(λ1) and J1(λ2) as its diagonal blocks, where λ1 6= λ2 and λ1λ2 6= 0, without loss of

generality we can assume A = diag{J1(λ1), J1(λ2), · · · }, then by (7), we have

V2
2 (t) > e2(λ1+λ2)t {λ1λ2(λ2 − λ1)r1(0)r2(0)}2 > 0.
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(d) If both J2(0) and J1(λ) (λ 6= 0) are diagonal blocks of A, without loss of generality we can
assume A = diag{J2(0), J1(λ), · · · }, then we have

V2
2 (t) >

∣∣∣∣∣∣
ṙ1(t) r̈1(t)

ṙ3(t) r̈3(t)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
r2(t) 0

λr3(t) λ2r3(t)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
r2(0) 0

λeλtr3(0) λ2eλtr3(0)

∣∣∣∣∣∣
2

=
(

λ2eλtr2(0)r3(0)
)2

> 0.

In the case of (a) (b) (c) (d), we have show that there exists a T > 0, such that V2(t) > 0 for all
t > T. Note that (a) (b) (c) (d) cover all cases where A is a matrix in real Jordan canonical form except
the two cases in (25). Nevertheless, by direct calculation, we have V2(t) ≡ 0 for the two cases in (25),
which completes the proof.

From Lemma 1, we know that except for the two trivial cases in (25), we have V2(t) > 0 when t is
sufficiently large, that is to say, there exists a T > 0, such that we have the expression (5) of torsion τ(t)
for all t > T, which avoids a lot of potential trouble when we consider the limit of τ(t) as t→ +∞ in
the proof of Theorem 2.

4.3. Function V3(t)

The function V3(t) is given by Proposition 6. In fact, we have

V2
3 (t) = ∑

16i<j<k6n

∣∣∣∣∣∣∣∣∣∣
ṙi(t) r̈i(t)

...
r i(t)

ṙj(t) r̈j(t)
...
r j(t)

ṙk(t) r̈k(t)
...
r k(t)

∣∣∣∣∣∣∣∣∣∣

2

. (28)

By (17) and (23), we see that all coordinates of r(s)(t) (s = 1, 2, 3) can be expressed in the form of

ṙi;k(t) = eRe(λi)t fi;k(t),

r̈i;k(t) = eRe(λi)tgi;k(t),
...
r i;k(t) = eRe(λi)thi;k(t),

where r(s)i;k (t) denotes the coordinate of r(s)(t) corresponding to the kth row of the ith diagonal block of
A. Hence

∣∣∣∣∣∣∣∣∣∣
ṙi1;k1(t) r̈i1;k1(t)

...
r i1;k1(t)

ṙi2;k2(t) r̈i2;k2(t)
...
r i2;k2(t)

ṙi3;k3(t) r̈i3;k3(t)
...
r i3;k3(t)

∣∣∣∣∣∣∣∣∣∣

2

= e2{Re(λi1)+Re(λi2)+Re(λi3)}tG(t), (29)

where G(t) is a linear combination of terms in the form of tβBγ(t), where Bγ(t) is a bounded function.
In the remainder of this paper, set

M = max{Re(λ)|λ ∈ σ(A)}.
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Then by (28) and (29), we obtain

∆1 6 6M, (30)

where ∆1 denotes the maximum values of α in the terms of the form eαttβBγ(t) in V2
3 (t).

4.4. Proof of Theorem 2 (1)

In order to give a proof of Theorem 2 (1), we only need to prove Proposition 10 (1). In this
subsection, we will discuss the two cases in which the zero solution of the system is unstable, and
obtain lim

t→+∞
τ(t) = 0. In fact, we will prove Lemma 2 and Lemma 3.

Lemma 2. Under the assumptions of Proposition 10, if M > 0, then for any given r(0) ∈ S, we have
lim

t→+∞
τ(t) = 0.

Proof. Suppose M > 0. Note that

τ2(t) =
V2

3 (t)
V4

2 (t)
=

∑16i<j<k6n

∣∣∣∣∣∣∣∣∣∣
ṙi(t) r̈i(t)

...
r i(t)

ṙj(t) r̈j(t)
...
r j(t)

ṙk(t) r̈k(t)
...
r k(t)

∣∣∣∣∣∣∣∣∣∣

2

∑16p<q6n

∣∣∣∣∣∣
ṙp(t) r̈p(t)

ṙq(t) r̈q(t)

∣∣∣∣∣∣
2


2 , (31)

where the functions V2
3 (t) and V4

2 (t) are both linear combinations of terms in the form of eαttβBγ(t),
where each Bγ(t) is a bounded function. We will prove lim

t→+∞
τ(t) = 0 for the following cases. For

simplicity, let t > 0.
(a) If A has a diagonal block Cm(M, b), then by (26), (29), and (30), we have

0 6 τ2(t) =
V2

3 (t)
V4

2 (t)
6

e6MtF(t) + R(t){
e4Mt

(
Ct4m−4 + ∑4m−5

ϕ=0 tϕBϕ(t)
)}2

=
e6MtF(t) + R(t)

e8Mt
(

C2t8m−8 + ∑8m−9
ψ=0 tψBψ(t)

) → 0 (t→ +∞),

where the constant C > 0, all Bϕ(t) and Bψ(t) are bounded functions, the function F(t) is a linear
combination of terms in the form of tβBγ(t), and R(t) is a linear combination of terms in the form of
eαttβBγ(t), where α < 6M, and each Bγ(t) is a bounded function. Hence we obtain lim

t→+∞
τ(t) = 0.

(b) If A has a diagonal block Jp(M) (p > 2), then by (27), (29), and (30), we have

0 6 τ2(t) =
V2

3 (t)
V4

2 (t)
6

e6MtF(t) + R(t)
e8Mt f 2(t)

→ 0 (t→ +∞),

where f (t) is a polynomial satisfying f (t) > 0 and deg( f (t)) = 4(p− 2), the function F(t) is a linear
combination of terms in the form of tβBγ(t), and R(t) is a linear combination of terms in the form of
eαttβBγ(t), where α < 6M, and each Bγ(t) is a bounded function. Hence we obtain lim

t→+∞
τ(t) = 0.
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(c) If in A only those J1(M) blocks are diagonal blocks satisfying Re(λ) = M, then we should
consider the eigenvalues whose real part is less than M. In fact, suppose two J1(M) diagonal blocks
are in the ith and jth row of A, respectively. Then∣∣∣∣∣∣

ṙi(t) r̈i(t)

ṙj(t) r̈j(t)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
eMt Mri(0) eMt M2ri(0)

eMt Mrj(0) eMt M2rj(0)

∣∣∣∣∣∣
2

= 0,

which means this term has no contribution to the value of V2
2 (t). In addition, note that J1(0) diagonal

blocks in A do not affect the value of τ(t). We define

N = max{Re(λ)|λ ∈ σ̃(A)\{M}},

where σ̃(A) denotes the set of eigenvalues of A which excluding the zero eigenvalues in J1(0) blocks.
(c1) Suppose that A has a diagonal block Cm(N, b). Let rM(t) denote the coordinate of r(t)

corresponding to the row of a diagonal block J1(M) of A, and rN,1(t), rN,2(t) denote the coordinate of
r(t) corresponding to the first and second row of the diagonal block Cm(N, b) of A, respectively. Then
by (22) and (23), we have

∣∣∣∣∣∣∣
ṙM(t) r̈M(t)

ṙN,1(t) r̈N,1(t)

∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣
ṙM(t) r̈M(t)

ṙN,2(t) r̈N,2(t)

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
eMt MrM(0) eMt M2rM(0)

eNt {NTm;1,1(t) + bTm;1,2(t) + Tm;2,1(t)} eNt {(N2 − b2) Tm;1,1(t) + 2NbTm;1,2(t) + · · ·
}
∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣
eMt MrM(0) eMt M2rM(0)

eNt {−bTm;1,1(t) + NTm;1,2(t) + Tm;2,2(t)} eNt {−2NbTm;1,1(t) +
(

N2 − b2) Tm;1,2(t) + · · ·
}
∣∣∣∣∣∣∣
2

=e2(M+N)t M2r2
M(0)

{(
N2 + b2

) [
(M− N)2 + b2

] [
T2

m;1,1(t) + T2
m;1,2(t)

]
+

2m−3

∑
χ=0

tχBχ(t)

}

=e2(M+N)t M2r2
M(0)

{(
N2 + b2

) [
(M− N)2 + b2

] [ r2
m,1(0) + r2

m,2(0)

[(m− 1)!]2
t2m−2 +

2m−3

∑
ϕ=0

tϕBϕ(t)

]
+

2m−3

∑
χ=0

tχBχ(t)

}

=e2(M+N)t

(
Ct2m−2 +

2m−3

∑
ψ=0

tψBψ(t)

)
, (32)

where the constant C = M2 (N2 + b2) {(M− N)2 + b2} r2
M(0)

r2
m,1(0)+r2

m,2(0)

[(m−1)!]2
> 0, and all Bχ(t), Bϕ(t),

and Bψ(t) are bounded functions.
(c2) Suppose that A has a diagonal block Jp(N). Let rM(t) denote the coordinate of r(t) corresponding

to the row of a diagonal block J1(M) of A, and rN(t) the coordinate of r(t) corresponding to the first
row of the diagonal block Jp(N) of A. Then by (16) and (17), we have

∣∣∣∣∣∣
ṙM(t) r̈M(t)

ṙN(t) r̈N(t)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
eMt MrM(0) eMt M2rM(0)

eNt {NPp;1(t) + Pp;2(t)
}

eNt {N2Pp;1(t) + 2NPp;2(t) + Pp;3(t)
}
∣∣∣∣∣∣
2

=


e2(M+N)t

(
Ct2p−2 +

2p−3

∑
ϕ=0

tϕBϕ(t)

)
, N 6= 0,

e2(M+N)t

(
Ĉt2p−4 +

2p−5

∑
ψ=0

tψBψ(t)

)
, N = 0 and p > 2,

(33)
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where the constants C, Ĉ > 0, and all Bϕ(t) and Bψ(t) are bounded functions.
By (c1) and (c2), we can give the expression of V2

2 (t) in case (c). In fact, we suppose

Cm1(N, b1), Cm2(N, b2), · · · , Cmk (N, bk), Jp1(N), Jp2(N), · · · , Jpl (N)

(m1 > m2 > · · · > mk, and p1 > p2 > · · · > pl)

are the all diagonal blocks whose eigenvalues satisfy Re(λ) = N. Then by (24), (32), and (33), we obtain

V2
2 (t) > e2(M+N)t

(
Ctν +

ν−1

∑
ϕ=0

tϕBϕ(t)

)
, (34)

where the constant C > 0,

ν =

{
max{2m1 − 2, 2p1 − 2}, N 6= 0,

max{2m1 − 2, 2p1 − 4}, N = 0,
(35)

and each Bϕ(t) is a bounded function.
In what follows, ∆1 and ∆2 denote the maximum values of α in the terms of the form eαttβBγ(t)

in V2
3 (t) and V4

2 (t), respectively. Then by (34), we have

∆2 = 4(M + N).

In the determinant of (29), we can see that at most one row corresponds to a diagonal block with
eigenvalue M, and the real parts of eigenvalues of the diagonal blocks corresponding to the other two
rows are not greater than N, otherwise the determinant vanishes in V2

3 (t). Hence we have

∆1 6 2(M + 2N).

Thus, we have ∆1 − ∆2 6 −2M < 0. It follows that

0 6 τ2(t) =
V2

3 (t)
V4

2 (t)
6

e∆1tF(t) + R(t)

e∆2t
(

C̃t2ν + ∑2ν−1
ψ=0 tψBψ(t)

) → 0 (t→ +∞),

where the constant C̃ > 0, each Bψ(t) is a bounded function, the function F(t) is a linear combination
of terms in the form of tβBγ(t), and R(t) is a linear combination of terms in the form of eαttβBγ(t),
where α < ∆1, and each Bγ(t) is a bounded function. Hence we obtain lim

t→+∞
τ(t) = 0.

Note that (a) (b) (c) cover all cases that satisfy M > 0, which completes the proof.

Now we give Lemma 3.

Lemma 3. Under the assumptions of Proposition 10, if M = 0, and A has a diagonal block Cm(0, b) (m > 2),
then for any given r(0) ∈ S, we have lim

t→+∞
τ(t) = 0.

Proof. Suppose M = 0, and A has a diagonal block Cm(0, b) (m > 2). Then from (30), we have ∆1 6 0.
From (24) and (26), we have ∆2 = 0.

If ∆1 < ∆2 = 0, then we have lim
t→+∞

τ(t) = 0.

If ∆1 = ∆2 = 0, in order to obtain the limit of τ(t) as t → +∞, we need to compare the highest
power of t of terms in the form e0ttβBγ(t) in the numerator and denominator of τ2(t). Let Γ1 and Γ2
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denote the maximum value of β in the terms of the form e0ttβBγ(t) in V2
3 (t) and V4

2 (t), respectively.
Then we have

Γ1 6 6(m− 1). (36)

In fact, by (21) and (23), for a diagonal block Cm(0, b) (m > 2), the functions Tm;1,1(t) and Tm;1,2(t) can

reach the highest power m− 1 of t, namely tm−1, thus r(s)1,1(t) and r(s)1,2(t) (s = 1, 2, 3) corresponding
the first two rows of Cm(0, b) (m > 2) can reach the highest power m− 1 of t. Hence by (28) and (29),
we obtain (36). In addition, by (24) and (26), we have

Γ2 = 2(4m− 4) = 8(m− 1).

Therefore Γ1 6 6(m− 1) < 8(m− 1) = Γ2. It follows that

0 6 τ2(t) =
V2

3 (t)
V4

2 (t)
6

∑Γ1
ϕ=0 tϕBϕ(t) + R(t)

CtΓ2 + ∑Γ2−1
ψ=0 tψBψ(t)

→ 0 (t→ +∞),

where the constants C > 0, all Bϕ(t) and Bψ(t) are bounded functions, and R(t) is a linear combination
of terms in the form of eαttβBγ(t), where α < 0, and each Bγ(t) is a bounded function. Hence we
obtain lim

t→+∞
τ(t) = 0.

Lemma 2 and Lemma 3 show that under the assumptions of Proposition 10, if the zero solution
of the system is unstable, then lim

t→+∞
τ(t) = 0. That is to say, Proposition 10 (1) is proved. Thus we

proved Theorem 2 (1).

4.5. Proof of Theorem 2 (2)

We have proved Proposition 10 (1), and in order to prove Proposition 10 (2), we only need to
prove the following lemma.

Lemma 4. Under the assumptions of Proposition 10, if M = 0, and in matrix A only those C1(0, b) blocks are
diagonal blocks satisfying Re(λ) = 0, then for any given r(0) ∈ S, we have lim

t→+∞
τ(t) = 0 or lim

t→+∞
τ(t) = C,

where the constant C > 0.

Proof. Set

A =



C1(0, b1)

C1(0, b2)

. . .

C1(0, bs)

Ã


,

where all eigenvalues of Ã have negative real parts.
(1) If s = 1, then by (24) and (26), we have ∆2 = 0. In the determinant of (29), we can see that

at most two rows correspond to the diagonal block C1(0, b1), and the real part of eigenvalue of the
diagonal block corresponding to the other row is negative. Hence ∆1 < 0. It follows that lim

t→+∞
τ(t) = 0.
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(2) If s > 1, then ∆1 6 0 = ∆2. By direct calculation, we have

lim
t→+∞

τ2(t) =
∑16i<j6s b2

i b2
j

(
b2

i − b2
j

)2 (
r2

i;1(0) + r2
i;2(0)

) (
r2

j;1(0) + r2
j;2(0)

)
{

∑s
k=1 b2

k

(
r2

k;1(0) + r2
k;2(0)

)}2
∑s

l=1 b4
l

(
r2

l;1(0) + r2
l;2(0)

)
=

{
0, b1 = b2 = · · · = bs,

C > 0, else.

Hence we have lim
t→+∞

τ(t) = 0 or lim
t→+∞

τ(t) = C > 0.

By Proposition 10 (1) and Lemma 4, we proved Proposition 10 (2), which completes the proof of
Theorem 2.

4.6. Remark

In Theorem 2 and Proposition 10, the condition that A is invertible cannot be removed. In fact, we
have the following two examples.

(1) Let

A =


0 1 0 0
0 0 0 0
0 0 −1 1
0 0 −1 −1

 .

Then by (31), we have

τ2(t) =
e4tr2

2(0){
e2tr2

2(0) + r2
3(0) + r2

4(0)
}2

for any given r(0) ∈ S. It follows that

lim
t→+∞

τ(t) =
1

|r2(0)|
> 0.

Nevertheless, since det A = 0, we cannot obtain stability from lim
t→+∞

τ(t) 6= 0. In fact, noting that A is a

matrix in real Jordan canonical form which has a diagonal block J2(0), we know that the zero solution
of the system is unstable.

(2) Let

A =


−1 1 0 0
0 −1 1 0
0 0 −1 0
0 0 0 0

 .

Then by a direct calculation, we have

lim
t→+∞

τ(t) = +∞

for any given r(0) ∈ S. Nevertheless, since det A = 0, the zero solution of the system is not
asymptotically stable.

5. Examples

In this section, we give two examples, which correspond to Theorem 1 and Theorem 2, respectively.
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5.1. Example 1

Let r(t) = (r1(t), r2(t), r3(t), r4(t))
T ∈ R4, and

A =


−25 −8 −39 19

−14 −10 −26 14

9 0 7 −9

−5 −8 −21 −1

 .

Then ṙ(t) = Ar(t) is a four-dimensional linear time-invariant system, and det A = 1 320 6= 0. Set

E =

{
r(0) ∈ R4

∣∣∣∣∣ 4

∏
i=1

vi,0 6= 0

}
,

where 
v1,0 = −r1(0)− 2r3(0) + r4(0),

v2,0 = −r1(0) + 2r2(0) + r3(0),

v3,0 = −r1(0) + 2r2(0) + 2r3(0) + r4(0),

v4,0 = r1(0) + r3(0)− r4(0).

Then the Lebesgue measure of E satisfies m(E) = +∞. By direct calculation, the limits of the first
curvature and the torsion of the trajectory r(t) as t → +∞ are lim

t→+∞
κ(t) = 0 and lim

t→+∞
τ(t) = 0 for

r(0) ∈ E, respectively. Nevertheless, the third curvature κ3(t) of the trajectory r(t) satisfies

lim
t→+∞

κ3(t) = +∞

for any r(0) ∈ E. Consequently, from Theorem 1, the zero solution of the system is asymptotically
stable.

The graph of the function κ3(t) is shown in Figure 1, where r(0) = (1, 1, 1, 1)T.

5 10 15 20
t

1 ´ 106

2 ´ 106

3 ´ 106

4 ´ 106

Κ3

Figure 1. Function κ3(t).

5.2. Example 2

We consider a popular model in classical mechanics called coupled oscillators (cf. [10]). Two masses
P and Q are attached with springs. Assume that the masses are identical, i.e., mP = mQ = m, but the
spring constants are different, as shown in the Figure 2.
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P Q

k k′ k

x
xP xQ

Figure 2. 1D Coupled Oscillators.

Let xP be the displacement of P from its equilibrium and xQ be the displacement of Q from its
equilibrium. Holding Q fixed and moving P, the force on P is

F1P = −kxP − k′xP.

Holding P fixed and moving Q, the force on P is

F2P = k′xQ.

Thus by Newton’s second law we have

mẍP = F1P + F2P = −(k + k′)xP + k′xQ.

Similarly, for Q we have

mẍQ = −(k + k′)xQ + k′xP.

Introducing two variables vP = ẋP and vQ = ẋQ, the above equations are equivalent to the following
linear system

˙
xP

xQ

vP

vQ

 =


0 0 1 0

0 0 0 1

− k+k′
m

k′
m 0 0

k′
m − k+k′

m 0 0




xP

xQ

vP

vQ

 . (37)

For simplicity we denote the system by ṙ(t) = Ar(t), where

r(t) =


xP(t)

xQ(t)

vP(t)

vQ(t)

 , A =


0 0 1 0

0 0 0 1

− k+k′
m

k′
m 0 0

k′
m − k+k′

m 0 0

 .

Set

E =

{
r(0) ∈ R4

∣∣∣∣∣ (r2
1(0)− r2

2(0)
) (

r2
3(0)− r2

4(0)
)
6= 0

}
.

Then the Lebesgue measure of E satisfies m(E) = +∞. By direct calculation, the torsion τ(t) of the
trajectory r(t) is a periodic function and lim

t→+∞
τ(t) does not exist for any r(0) ∈ E. Hence by Theorem 2,

the zero solution of the system (37) is stable.
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As an example, we suppose that k/m = 1 and k′/m = 2, and the initial value r(0) = (1, 2, 1, 2)T.
Then we have

τ2(t) =

√
5 sin

(
2
√

5t
)
+ 2 cos

(
2
√

5t
)
+ 17

2
{√

5 sin
(

2
√

5t
)
+ 2 cos

(
2
√

5t
)
− 11

}2 .

The graph of the function τ2(t) is shown in Figure 3.

0 2 4 6 8
t

0.05

0.10

0.15

Τ
2

Figure 3. Function τ2(t).

6. Conclusions and Future Work

The main contribution of this paper is to further develop the geometric description of stability
of linear time-invariant systems in arbitrary dimension. Unlike traditional methods based on linear
algebra, we focus on the curvature of curves. Specifically, the main results of this paper, Theorem 1
and Theorem 2 are proved. For the case where A is similar to a real diagonal matrix, Theorem 1 gives
a relationship between the ith curvature (i = 1, 2, · · · ) of the trajectory and the stability of the zero
solution of the system ṙ(t) = Ar(t). Further, Theorem 2 establishes a torsion discriminance for the
stability of the system in the case where A is invertible.

For each theorem, we give an example to illustrate the result. In particular, we use the coupled
oscillators as an example of the torsion discrimination.

In the future, we will continue to use geometric methods to describe the properties of other kinds
of control systems.
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