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Abstract

The Fréchet mean is an important statistical summary and measure of centrality of data; it has been
defined and studied for persistent homology captured by persistence diagrams. However, the complicated
geometry of the space of persistence diagrams implies that the Fréchet mean for a given set of persistence
diagrams is generally not unique, which prohibits theoretical guarantees for empirical means with respect to
population means. In this paper, we derive a variance expression for a set of persistence diagrams exhibiting
a multi-matching between the persistence points known as a grouping. Moreover, we propose a condition
for groupings, which we refer to as flatness: sets of persistence diagrams that exhibit flat groupings give rise
to unique Fréchet means. Together with recent results from Alexandrov geometry, this allows for the first
derivation of a finite sample convergence rate for sets of persistence diagrams that exhibit flat groupings.
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1 Introduction

Persistent homology is an important methodology from topological data analysis which has gained rapid
interest and application over the past recent decades and by now has been widely implemented in many
applications across diverse scientific domains. Given that its primary purpose is to summarize topological
and geometric aspects of data—specifically, it captures the “shape” and “size” of a given dataset—studying
statistical aspects of persistent homology is a crucial task to make topological data analysis a valid approach
for data analysis.

The space of persistence diagrams is a viable setting for statistics and probability, satisfying conditions for
the existence of important statistical and probabilistic quantities, such as means, variances, and probability
measures (Mileyko et al., 2011). This paper studies the mean, in particular, which is perhaps the most
fundamental statistic that captures the central tendency of data and provides an understanding of what
we expect to see on average for a data generating process. The Fréchet mean is a generalization of the
usual algorithmic mean to general metric spaces and has been previously defined and studied for sets of
persistence diagrams (Turner, 2013). Significant results on Fréchet means for sets of persistence diagrams
were provided by Turner et al. (2014), which include an algorithm for its computation along with the only
known convergence result for Fréchet means to date. However, this result is valid only in quite restrictive
settings, and most importantly, under the assumption of uniqueness of the Fréchet mean. Due to the
complicated geometry of the space of persistence diagrams—in particular, it is an nonnegatively curved
Alexandrov space (Turner et al., 2014) with the implication that geodesics are not even locally unique—it is
far from clear that the Fréchet mean should ever be unique. This lack of a condition for uniqueness prohibits
a comprehensive convergence analysis for empirical Fréchet means of persistence diagrams computed from
real datasets (Cao and Monod, 2022). The practical implication of a lack of convergence guarantee is that it is
difficult, if not impossible, to draw conclusions about the behavior of the general distribution and population
from observed samples. We are thus restricted to only making descriptive and exploratory observations
with Fréchet means computed from sampled data and cannot inference on the general behavior of the data
generating process and the general unseen population with any theoretical guarantees.

In this paper, we propose a geometric condition on sets of persistence diagrams that guarantees unique-
ness of Fréchet means. In particular, we consider a multi-matching representation between persistence points
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known as a grouping (Munch et al., 2015) and derive a variance expression for groupings. Further, we pro-
pose a geometric condition on groupings, which we refer to as flatness, and show that flat groupings give
rise to unique Fréchet means. Using recent computational and statistical results on Alexandrov spaces by
Le Gouic et al. (2019), we then derive the first finite sample convergence rate for empirical Fréchet means
to population means for sets of persistence diagrams that exhibit flat groupings.

The remainder of this paper is organized as follows. In Section 2, we provide background and details on
persistent homology and metric geometry, and in particular, the metric geometry of persistence diagrams and
the space of persistence diagrams. In Section 3, we recall definitions of a grouping and a Fréchet mean, which
are our specific objects of interest in this paper. Here, we also present our contributions of an expression
for the variance of general groupings, our proposed notion of flatness of groupings, and prove uniqueness
of Fréchet means for sets of persistence diagrams for which there exist flat groupings. Section 4 presents
the first finite sample convergence rate for empirical Fréchet means of persistence diagrams exhibiting flat
groupings to population means. We close in Section 5 with a discussion of our findings and some ideas for
future research based on our contributions in this paper.

2 Background: Persistent Homology, Metric Geometry,

and Metric Geometry of Persistent Homology

In this section, we provide background and details on our setting and objects of study: persistent homology,
which gives rise to persistence diagrams, and the space of all persistence diagrams. We also review some
concepts from metric geometry that will be essential for our study and construction of our results.

2.1 Persistent Homology

The standard pipeline of persistent homology begins with a filtration, which is a nested sequence of topological
spaces: M0 ⊆ M1 ⊆ · · · ⊆ Mn = M. By applying the homology functor H(·) with coefficients in a field, we
have the sequence of homology vector spaces H(M0) → H(M1) → · · · → H(Mn). The collection of vector
spaces H(Mi), together with vector space homomorphisms H(Mi) → H(Mj), i < j, is called a persistence
module. When each H(Xi) is finite dimensional, a persistence module can be decomposed into a direct sum of
irreducible summands called interval modules, which correspond to birth and death times of homology classes
(Chazal et al., 2016). The collection of birth–death intervals [ǫi, ǫj) are called barcodes and they represent
the persistent homology of the filtration of M. Each interval can also be identified as the coordinate of a
point in the plane R

2. In this way we have an alternate representation known as a persistence diagram. For
a detailed introduction of persistence homology, see e.g., Edelsbrunner et al. (2008); Edelsbrunner and Harer
(2010).

Definition 1. A persistence diagram D is a locally finite multiset of points in the half-plane Ω = {(x, y) ∈
R

2 | x < y} together with points on the diagonal ∂Ω = {(x, x) ∈ R
2} counted with infinite multiplicity.

Points in Ω are called off-diagonal points. The persistence diagram with no off-diagonal points is called the
empty persistence diagram, denoted by D∅.

The geometry and statistical properties of the space of persistence diagrams are the main focus of this
paper.

2.2 Metric Geometry

We now outline essential concepts from metric geometry and refer to Burago et al. (2001) for a comprehensive
and detailed discussion.

Let (S, d) be an arbitrary metric space. For any two points x, y ∈ S, a geodesic connecting x and y is a
continuous curve γ : [a, b] → S such that for any a ≤ s ≤ t ≤ b,

d(γ(s), γ(t)) =
t− s

b− a
d(x, y).
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(S, d) is called a geodesic space if any two points can be joined by a geodesic. A geodesic space is an
Alexandrov space with nonnegative curvature if for every triangle {x0, x1, y} ⊆ S and a geodesic γ : [0, 1] → S
connecting x0 and x1 there exists an isometric triangle {x̃0, x̃1, ỹ} in R

2 such that d(y, γ(t)) ≥ ‖ỹ − γ̃(t)‖,
where γ̃(t) = tx̃1 + (1− t)x̃0 is the line segment joining x̃0 and x̃1 in the Euclidean plane.

Given z ∈ S, let Γz be the set of all geodesics emanating from z. For any two geodesics γ0, γ1 ∈ Γz, the
Alexandrov angle ∠z(γ0, γ1) is defined by

∠z(γ0, γ1) = lim
s,t→0

cos−1

(
d2(z, γ0(t)) + d2(z, γ1(s))− d2(γ0(t), γ1(s))

2d(z, γ0(t))d(z, γ1(s))

)
.

If (S, d) is an Alexandrov space with nonnegative curvature then ∠z : Γz × Γz → [0, π] is well-defined and a
pseudo-metric on Γz. Therefore ∠z defined a metric on the quotient space Γz/ ∼ where γ0 ∼ γ1 if and only
if ∠z(γ0, γ1) = 0.

The completion (Γ̂z,∠z) of (Γz/ ∼,∠z) is called the space of directions. Let vγ denote the direction

of γ at z, i.e., the equivalence class of γ in Γ̂z. The tangent cone TzS is defined as Γ̂z × R+/ ∼ where
(vγ , t) ∼ (vη, s) if and only if t = s = 0 or (vγ , t) = (vη, s). Let [vγ , t], [vη, s] ∈ TzS be two tangent vectors,
then define

Cz([vγ , t], [vη, s]) =
√
s2 + t2 − 2st cos∠z(vγ , vη). (1)

Cz is a metric on TzS called the cone metric.
For a geodesic space, the logrithmic map (log map) at z logz : S → TzS assigns x to [vγ , d(z, x)] where

γ is a geodesic from z to x. The log map is a multimap since there can be different geodesics from z to x.
By selecting an arbitrary direction for every x the log map is a well-defined map, and moreover logz can be
chosen to be measurable with respect to the Borel algebra of TzS (Le Gouic et al., 2019).

2.3 Metric Geometry of Persistence Diagram Space

The collection of all persistence diagrams may be viewed as a space; in particular, it is a metric space and
hence its metric geometry may be studied. Although there exist various possible metrics on the space of
persistence diagrams, we focus on the following.

Definition 2. For any two persistence diagrams D1 and D2, define the 2-Wasserstein distance by

W2(D1, D2) = inf
φ

(
∑

x∈D1

‖x− φ(x)‖2

) 1

2

where φ ranges over all bijections betweenD1 andD2, and ‖·‖ denotes the 2-norm onR
2. The total persistence

of a persistence diagram D is defined as W2(D,D∅). Let D2 be the set of all persistence diagrams with finite
total persistence.

Under the 2-Wasserstein distance, we now discuss several metric geometric characteristics of the space of
persistence diagrams. We have that (D2,W2) is an Alexandrov space with nonnegative curvature (Turner
et al., 2014); the curvature behavior is largely determined by the boundary, see Figure 1. Moreover, we
have the following characterization of geodesics between persistence diagrams: Let D1 and D2 be two
persistence diagrams with finite total persistence and φ : D1 → D2 be an optimal matching, then the
geodesic γ : [0, 1] → D2 joining D1 to D2 is such that γ(t) is in fact a persistence diagram with points of the
form (1 − t)x+ tφ(x) where x ranges all points from D1.

We also have the following characterization concerning tangent vectors. Let D ∈ D2 be a persistence
diagram. A tangent vector in the tangent cone TDD2 can be represented as a set of vectors {vi ∈ R

2, i ∈
I} ∪ {vj ∈ R

2, j ∈ J} where I is the index set of off-diagonal points in D and J is the index set of vectors
perpendicular to the diagonal such that

∑
i∈I ‖vi‖

2 +
∑

j∈J ‖vj‖
2 < ∞. Note that there may exist tangent

vectors with no corresponding geodesics.

Example 3. Consider the persistence diagram D = {xn =
(
0, 1

n2

)
, n ∈ N}. At each xn, assign the vector

vn =
(
1
n
,− 1

n

)
. We claim that the collection V = {vn, n ∈ N} is an element in TDD2. In fact, let VN = {ṽn =

3



A

A⊤

B

B⊤

Figure 1: Curvature is determined by the boundary. Consider three persistence diagrams: diagram DA with
a single off-diagonal point A, diagram DB with a single off-diagonal point B, and the empty diagram D∅

with no off-diagonal point. The three edges of triangle △D∅DADB are plotted with solid lines. For the
comparison triangle, given W2(DA, D∅) = ‖AA⊤‖, W2(DA, DB) = ‖AB‖, and ∠D∅DADB = ∠A⊤AB, the
length of the third edge is ‖A⊤B‖. We see that ‖A⊤B‖ > ‖BB⊤‖ = W2(DB, D∅), indicating nonnegative
Alexsandrov curvature.

vn, 1 ≤ n ≤ N} ∪ {ṽn = 0, n > N}. The geodesic γN (t) = {xn + tṽn, n ∈ N} is well-defined for t ∈ [0, 1
2N

].
For 1 ≤ N ≤ M ,

cos∠D(VN , VM ) = lim
s,t→0

W2
2(γN (t), D) +W2

2(γM (s), D)−W2
2(γN (t), γM (s))

2W2(γN (t), D)W2(γM (s), D)

≥ lim
s,t→0

N∑

n=1

2t2

n2
+

M∑

n=1

2s2

n2
−

N∑

n=1

2(t− s)2

n2
−

M∑

n=N+1

2s2

n2

2

√√√√
N∑

n=1

2t2

n2

√√√√
M∑

n=1

2s2

n2

=

√√√√
N∑

n=1

1

n2

√√√√
M∑

n=1

1

n2

Hence under the cone metric,

C2
D(VN , VM ) = ‖VN‖2 + ‖VM‖2 − 2‖VN‖‖VM‖ cos∠D(VN , VM )

≤ 2

N∑

n=1

1

n2
+ 2

M∑

n=1

1

n2
− 2

√√√√2

N∑

n=1

1

n2
·

√√√√2

M∑

n=1

1

n2
·

√√√√
N∑

n=1

1

n2

√√√√
M∑

n=1

1

n2

= 2

M∑

n=N+1

1

n2
→ 0, N,M → ∞

Therefore, {VN}N∈N is a Cauchy sequence in TDD2 and converges to V . However, V is not a tangent vector
of any geodesic emanating from D as for any fixed t, xn + tvn /∈ Ω when n is sufficiently large.
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3 Groupings of Persistence Diagrams and their Fréchet Means

Let (S, d) be a metric space and µ be a (Borel) probability measure on S. The Fréchet function is defined
by

F (x) =

∫

S

d2(x, y) dµ(y).

If F (x) is finite for some (hence, every) x, the probability measure µ is said to have finite second moment.
The quantity V = infx∈S F (x) is the variance of µ. The set of points achieving the variance is the Fréchet
mean or expectation.

Fréchet means for sets of persistence diagrams exist, given that a probability measure on (D2,W2) has
finite second moment and compact support (Mileyko et al., 2011; Turner et al., 2014). However, Fréchet
means are not necessarily unique due to the nonnegative curvature of (D2,W2). The lack of unique Fréchet
means is problematic in many practical applications as well as theoretical settings—for example, averaging
time-varying persistence diagrams (Munch et al., 2015) and establishing convergence of empirical Fréchet
mean of persistence diagrams (Cao and Monod, 2022)—however, approximations for Fréchet means are
computable.

Let D1, . . . , DL be a finite set of persistence diagrams with finite off-diagonal points, and µ = 1
L

∑L
i=1 δDi

be a discrete probability measure. The Fréchet function for this set of persistence diagrams is

F (D) =
1

L

L∑

i=1

W2
2(D,Di). (2)

Turner et al. (2014) proposed a greedy algorithm to compute local minima of the Fréchet function (2).
Other work by Lacombe et al. (2018) in more general contexts has also given rise to alternative algorithms
to compute Fréchet means for persistence diagrams. Munch et al. (2015) introduced probabilistic Fréchet
means to average time-varying persistence diagrams. We now recall and rephrase some definitions and results
from some of this prior work which will be useful for our study.

Definition 4. For a finite set of persistence diagrams D1, . . . , DL, each with k1, . . . , kL off-diagonal points,
a grouping G is a K × L matrix where K = k1 + · · · + kL. The jth column Gj consists of kj off-diagonal
points of Dj and K − kj copies of the diagonal ∂Ω. Each row is called a selection. A trivial selection is a
row with all ∂Ω entries.

Intuitively, a grouping is a matching of points between persistence diagrams. For the special case with
L = 2, a grouping is equivalent to a bijective matching between two persistence diagrams, with each se-
lection representing the one-to-one correspondence between points. In general cases, a grouping is thus a
representation of multi-matching, i.e., any two columns of the grouping induce a bijective matching between
corresponding persistence diagrams.

For any x ∈ Ω, let x⊤ be the projection to the diagonal, and x⊥ = x − x⊤. Set ‖x − ∂Ω‖ = ‖x⊥‖ and
‖∂Ω − ∂Ω‖ = 0. Let Q = {x1, . . . , xL} be a multiset of off-diagonal points and copies of the diagonal. If

Q ⊆ Ω consists of off-diagonal points only, the mean point Q̄ is the usual algorithmic mean Q̄ = 1
L

∑L
i=1 xi.

If Q = {x1, . . . , xs} ∪ {∂Ω, . . . , ∂Ω} consists of (L− s) copies of the diagonal, set Qo = {x1, . . . , xs}, and the
mean point is then given by

Q̄ =
sQ̄o + (L− s)(Q̄o)

⊤

L
. (3)

If Q = {∂Ω, . . . , ∂Ω}, then Q̄ = ∂Ω.

Definition 5. Let {D1, . . . , DL} be a set of persistence diagrams and G be a grouping of size K × L. The
mean persistence diagram mean(G) is the diagram where each off-diagonal point is given by Ḡi for each
nontrivial selection Gi. The variance of G is defined as

V(G) =
1

L

L∑

j=1

K∑

i=1

‖Gj
i − Ḡi‖

2. (4)
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The following theorem establishes the relation between Fréchet means and groupings of persistence dia-
grams.

Theorem 6. (Turner et al., 2014, Theorem 3.3) Given a finite set of persistence diagrams D1, . . . , DL, if
D⋆ is a Fréchet mean then D⋆ = mean(G⋆) for some grouping G⋆, and the optimal matching between D⋆

and each Di, i = 1, . . . , L is induced by G⋆.

This result allows us to consider the Fréchet variance as the minimal variance of groupings,

σ2 = min
D

1

L

L∑

i=1

W2(D,Di)
2 = min

G
V(G).

Optimal groupings are groupings that achieve the Fréchet variance. For a general grouping we derive the
following variance expression.

Theorem 7. Let {D1, . . . , DL} be a set of persistence diagrams, and G be a grouping of size K ×L. Let si
be the number of off-diagonal points in the ith row of G. The variance of G is

V(G) =
1

L2

K∑

i=1

∑

1≤w<ℓ≤L

‖Gw
i −Gℓ

i‖
2 +

K∑

i=1

L− si
L2si


 ∑

1≤w<ℓ≤si

‖(Gjw
i )⊤ − (Gjℓ

i )⊤‖2


 , (5)

where Gjℓ
i , ℓ = 1, . . . , si ranges over all off-diagonal points in the ith row of G. If si = 0, the summand is

taken to be 0.

Proof. Let Gi be the ith row with si > 0 off-diagonal points. Then the variance for Gi is

V(Gi) =
1

L

(( si∑

ℓ=1

‖Gjℓ
i − Ḡi‖

2

)
+ (L− si)‖Ḡi − ∂Ω‖2

)

=
1

L

(( si∑

ℓ=1

‖Gjℓ
i ‖2

)
− 2

〈 si∑

ℓ=1

Gjℓ
i , Ḡi

〉
+ si‖Ḡ

⊤
i ‖

2 + L‖Ḡ⊥
i ‖

2

)
. (6)

Note that

Ḡ⊤
i =

1

si

si∑

ℓ=1

(Gjℓ
i )⊤, Ḡ⊥

i =
1

L

si∑

ℓ=1

(Gjℓ
i )⊥

and 〈 si∑

ℓ=1

Gjℓ
i , Ḡi

〉
=

〈 si∑

ℓ=1

(Gjℓ
i )⊤, Ḡ⊤

i

〉
+

〈 si∑

ℓ=1

(Gjℓ
i )⊥, Ḡ⊥

i

〉
.

Substituting these expressions into (6), we obtain

V(Gi) =
1

L

si∑

ℓ=1

‖Gjℓ
i ‖2 −

si
L
‖Ḡ⊤

i ‖
2 − ‖Ḡ⊥

i ‖
2. (7)

For the last two terms, we have

si
L
‖Ḡ⊤

i ‖
2 + ‖Ḡ⊥

i ‖
2 =

1

Lsi

si∑

w=1

si∑

ℓ=1

〈
(Gjw

i )⊤, (Gjℓ
i )⊤

〉
+

1

L2

si∑

w=1

si∑

ℓ=1

〈
(Gjw

i )⊥, (Gjℓ
i )⊥

〉

=
1

Lsi

si∑

w=1

si∑

ℓ=1

〈
Gjw

i , Gjℓ
i

〉
−

L− si
L2si

si∑

w=1

si∑

ℓ=1

‖(Gjw
i )⊥‖‖(Gjℓ

i )⊥‖

=
1

2Lsi

si∑

w=1

si∑

ℓ=1

(
‖Gjw

i ‖2 + ‖Gjℓ
i ‖2 − ‖Gjw

i −Gjℓ
i ‖2

)
−

L− si
L2si

( si∑

ℓ=1

‖(Gjℓ
i )⊥‖

)2

=
1

L

si∑

ℓ=1

‖Gjℓ
i ‖2 −

1

Lsi

∑

1≤w<ℓ≤si

‖Gjw
i −Gjℓ

i ‖2 −
L− si
L2si

( si∑

ℓ=1

‖(Gjℓ
i )⊥‖

)2

, (8)

6



where we used the fact that (Gjw
i )⊥ and (Gjℓ

i )⊥ are parallel and in the same direction. Combining (7) and
(8), we have

V(Gi) =
1

Lsi

∑

1≤w<ℓ≤si

‖Gjw
i −Gjℓ

i ‖2 +
L− si
L2si

( si∑

ℓ=1

‖(Gjℓ
i )⊥‖

)2

. (9)

We expand the first term as follows:

1

Lsi

∑

1≤w<ℓ≤si

‖Gjw
i −Gjℓ

i ‖2 =
( 1

2L2
+

L− si
2L2si

) si∑

w=1

si∑

ℓ=1

‖Gjw
i −Gjℓ

i ‖2

=
1

2L2

( si∑

w=1

si∑

ℓ=1

‖Gjw
i −Gjℓ

i ‖2 +

si∑

w=1

L∑

ℓ=si+1

‖Gjw
i − ∂Ω‖2 +

L∑

w=si+1

si∑

ℓ=1

‖Gjℓ
i − ∂Ω‖2

)

−
L− si
L2

si∑

ℓ=1

‖Gjℓ
i − ∂Ω‖2 +

L− si
2L2si

si∑

w=1

si∑

ℓ=1

‖Gjw
i −Gjℓ

i ‖2

=
1

L2

∑

1≤w<ℓ≤L

‖Gjw
i −Gjℓ

i ‖2 −
L− si
L2

si∑

ℓ=1

‖Gjℓ
i − ∂Ω‖2 +

L− si
2L2si

si∑

w=1

si∑

ℓ=1

‖Gjw
i −Gjℓ

i ‖2.

Therefore, we have

V(Gi)−
1

L2

∑

1≤w<ℓ≤L

‖Gjw
i −Gjℓ

i ‖2 =

=−
L− si
L2

si∑

ℓ=1

‖Gjℓ
i − ∂Ω‖2 +

L− si
2L2si

si∑

w=1

si∑

ℓ=1

‖Gjw
i −Gjℓ

i ‖2 +
L− si
L2si

( si∑

ℓ=1

‖(Gjℓ
i )⊥‖

)2

=
L− si
L2si

(
1

2

si∑

w=1

si∑

ℓ=1

‖Gjw
i −Gjℓ

i ‖2 +

si∑

w=1

si∑

ℓ=1

‖(Gjw
i )⊥‖‖(Gjℓ

i )⊥‖ −

si∑

w=1

si∑

ℓ=1

‖(Gjw
i )⊥‖2

)

=
L− si
L2si

si∑

w=1

si∑

ℓ=1

(
1

2
‖Gjw

i −Gjℓ
i ‖2 + ‖(Gjw

i )⊥‖‖(Gjℓ
i )⊥‖ −

1

2
‖(Gjw

i )⊥‖2 −
1

2
‖(Gjℓ

i )⊥‖2
)

=
L− si
L2si

∑

1≤w<ℓ≤si

‖(Gjw
i )⊤ − (Gjℓ

i )⊤‖2.

Finally, summing V(Gi) for all rows, we obtain (5).

Notice that if we disregard the diagonal ∂Ω and suppose G is a grouping of points in the plane R
2, then

the variance of G only consists of the first term in (5). The diagonal contributes the second term in the
variance expression.

The derived variance expression motivates the following definition.

Definition 8. A grouping G is called flat if there exists λ > 0 such that

1. For each nontrivial selection Gi, the diameter is bounded above by λ, i.e., ‖Gw
i − Gℓ

i‖ < λ for all
w, ℓ = 1, . . . , L;

2. For two distinct selections Gi, Gj , the distance between Gi and Gj is bounded below by λ, i.e., ‖Gw
i −

Gℓ
j‖ > λ for all w, ℓ = 1, . . . , L;

3. Off-diagonal points are bounded away from the diagonal by λ, i.e., ‖Gw
i − ∂Ω‖ > λ for Gw

i 6= ∂Ω.

A visual example of flatness is illustrated in Figure 2.
Given this notion of flatness, we now have a condition that gives rise to unique Fréchet means of persis-

tence diagrams.

Theorem 9. Let {D1, . . . , DL} be a set of persistence diagrams. If there exists a flat grouping G⋆ for
{D1, . . . , DL}, then mean(G⋆) is the unique Fréchet mean of {D1, . . . , DL}.
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Figure 2: An example of flat groupings. The off-diagonal points of Dred, Dblue, Dcyan are distributed as three
clusters over the half-plane Ω. Every dashed circle indicates a selection of the grouping. The Fréchet mean
is given by Dblack.

Proof. Suppose G⋆ is a flat grouping. By conditions 1 and 3, each nontrivial selection of G does not contain
the diagonal. Thus, the variance of G⋆ is

V(G⋆) =
1

L2

∑

i=1

∑

1≤w<ℓ≤L

‖(G⋆)
w
i − (G⋆)

ℓ
i‖

2.

Let G be any grouping. By (5), we have

V(G) ≥
1

L2

∑

1≤w<ℓ≤L

∑

i=1

‖Gw
i −Gℓ

i‖
2.

Now, fix any two columns w and ℓ. Without loss of generality, we may assume (G⋆)
w
i = Gw

i (otherwise, we
may apply row permutation to achieve this form). By conditions 2 and 3,

min{‖Gw
i −Gℓ

i‖, ‖G
w
i − ∂Ω‖} > λ > ‖Gw

i − (G⋆)
ℓ
i‖

for any Gℓ
i 6= (G⋆)

ℓ
i . Therefore, V(G) > V(G⋆) if G 6= G⋆. Thus mean(G⋆) is the unique Fréchet mean.

Remark 10. If there exists a flat grouping for D1, . . . , DL, then the off-diagonal points are distributed as sev-
eral clusters over the half-plane Ω; see Figure 2. Though flat groupings are special, there are counterexamples
if we drop any one of the three conditions; see Figure 3.

4 A Finite Sample Convergence Rate for Flat Groupings

With a guarantee of uniqueness of Fréchet means for sets of persistence diagrams given by Theorem 9 above,
we are now in a position to derive a finite sample convergence rate for the empirical Fréchet mean for sets
of persistence diagrams exhibiting flat groupings to the population Fréchet mean, which is the main topic in
this section. Such a result paves the way to establishing the Fréchet mean as a viable tool with theoretical
guarantees in important practical settings, such as those discussed by Cao and Monod (2022) on finding an
appropriate representation to approximate the true persistent homology of a very large, yet finite, dataset.

For ρ = 1
L

∑L
i=1 δDi

a discrete probability measure supported on {D1, . . . , DL} andD′
1, . . . , D

′
B i.i.d. sam-

ples drawn from ρ, Turner et al. (2014) proved that if the Fréchet mean for ρ is unique, then with probability
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>
λ

< λ

Figure 3: Counterexamples violating the conditions of flat groupings. On the left panel, a grouping for two
persistence diagrams Dred, Dblack is depicted by solid lines. Four off-diagonal points form the corners of a
square, hence the grouping violates conditions 1 and 2. The Fréchet mean is not unique as the grouping
depicted by dotted lines gives another Fréchet mean. On the right panel, the grouping depicted by the solid
lines satisfies conditions 1 and 2, but violates condition 3 as all off-diagonal points are near the diagonal.
The mean of the grouping is not a Fréchet mean. The optimal grouping here will match all off-diagonal
points with the diagonal.

one the empirical Fréchet mean converges to the population Fréchet mean under the Hausdorff distance.
This is the only existing convergence result for Fréchet means of sets of persistence diagrams; there is no
finite sample convergence rate for Fréchet means of persistence diagrams. Recently, Le Gouic et al. (2019)
established a general theory on the convergence rate of empirical Fréchet means in Alexandrov spaces with
curvature bounded from below. Although it is tempting to apply these results directly to the space (D2,W2)
which is also an Alexandrov space with curvature bounded from below, the general theory is unfortunately
not applicable for technical reasons unique to the space of persistence diagrams that will be elaborated
upon, following more in-depth discussions in this section. We borrow the main idea, but need to reconstruct
new results for our specific setting. We begin by outlining some properties of Fréchet means presented by
Le Gouic et al. (2019) and then present our convergence result.

4.1 Metric Properties of Fréchet Means of Persistence Diagrams

Let (S, d) be a geodesic space. Given two tangent vectors [u, s], [v, t] ∈ TzS, [u, s] is said to be opposite to
[v, t] if s = t = 0 or s = t 6= 0 and ∠z(u, v) = π. Define

HzS = {[u, s] ∈ TzS | ∃ [v, t] ∈ TzS opposite to [u, s]}.

Let oz = [v, 0] be the tip of the tangent cone. Note that oz ∈ HzS, thus HzS is nonempty. Alexander et al.
(2022) show that HzS with the inherited cone metric is in fact a Hilbert space when S is an Alexandrov
space with nonnegative curvature. HzS is referred to as the Hilbert subcone of the tangent cone at z.

Let logz be the log map at z. Suppose logz(x) = [vxz , d(z, x)] and logz(y) = [vyz , d(z, y)]. Denote
〈logz(x), logz(y)〉z := d(z, x)d(z, y) cos∠(vxz , v

y
z ). Let µ be a probability measure on (S, d) with finite second

moment and z⋆ be a Fréchet mean of µ. The tangent cone at z⋆ then exhibits the following properties.

Theorem 11. (Le Gouic et al., 2019, Theorem 7) Let (S, d) be an Alexandrov space with nonnegative
curvature. Then

1. At z⋆, the following equality holds
∫∫

〈logz⋆(x), logz⋆(y)〉z⋆ dµ(x)dµ(y) = 0; (10)
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2. The Hilbert subcone at z⋆ satisfies log⋆(supp(µ)) ⊆ H⋆S;

3. For any probability measure ν with finite second moment and logz⋆(supp(ν)) ⊆ Hz⋆S, and any y ∈ S,

∫

S

〈logz⋆(x), logz⋆(y)〉z⋆ dν(x) =

〈∫

Hz⋆
S

u dν#(u), logz⋆(y)

〉

z⋆

, (11)

where ν# = (logz⋆)#(ν) is the pushforward measure on Hz⋆S.

For the first property, at any point z ∈ S the following inequality holds
∫∫

〈logz(x), logz(y)〉z dµ(x)dµ(y) ≥ 0

as a consequence of the Lang–Schroeder inequality (Le Gouic, 2020; Lang and Schroeder, 1997). Furthermore,
if z = z⋆ is a Fréchet mean, then we have

∫
〈logz⋆(x), logz⋆(y)〉z⋆ dµ(x) ≤ 0

for all y ∈ S, which yields (10).
For the second property, note that although the Hilbert subcone is defined at any point in S, it can be

trivial as there may not exist a pair of tangent vectors with opposite directions, as in the space of persistence
diagrams, which we formalize below.

Proposition 12. The Hilbert subcone at the empty persistence diagram D∅ is trivial with a single point,
i.e., HD∅

(D2) = {oD∅
}.

Proof. For any two nonempty persistence diagrams D1, D2, note that assigning all points to the diagonal
gives a trivial bijection between D1 and D2. We have

W2
2(D1, D∅) +W2

2(D2, D∅) ≥ W2
2(D1, D2),

meaning that the angle between any two directions at D∅ is bounded by π
2
. Thus, the Hilbert subcone only

consists of the tip oD∅
.

Thus the second property of Theorem 11 is crucial to guarantee that the Hilbert subcone at the Fréchet
mean is not trivial given that the probability measure is not a Dirac measure at a single point.

Definition 13. Fix z, y ∈ S, the hugging function at z with respect to y is defined as

κy
z(x) = 1−

C2
z(logz(x), logz(y))− d2(x, y)

d2(y, z)
.

Intuitively, the hugging function at z measures the proximity of S to the tangent cone TzS. More
importantly, at the Fréchet mean, we have the following equality.

Theorem 14. (Le Gouic et al., 2019, Theorem 8) Let (S, d) be an Alexandrov space with nonnegative
curvature and z⋆ be a Fréchet mean for the probability measure µ. Then

d(y, z⋆)

∫
κy
z⋆
(x) dµ(x) =

∫
(d2(x, y)− d2(x, z⋆)) dµ(x) (12)

for all y ∈ S.

Limitations. The work of Le Gouic et al. (2019) assumes that the hugging function at the barycenter has
a positive lower bound for all points in the entirety of the space. This assumption is closely related to the
bi-extendibility of geodesics, meaning that a geodesic can be extended for a positive amount of time at both
the start and end points. However, in the space of persistence diagrams, no geodesic can extend beyond the
diagonal, which prohibits the direct application of these existing results.
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4.2 Convergence of Empirical Fréchet Means of Flat Groupings

Let ρ = 1
L

∑L
i=1 Di be a discrete probability measure onD2, andD′

1, . . . , D
′
B be i.i.d. samples from ρ. Assume

G is an flat grouping for D1, . . . , DL. By Theorem 9, D⋆ = mean(G) is the unique population Fréchet mean
for ρ. Let G′ be the induced grouping for D′

1, . . . , D
′
B, i.e., each column (G′)j is the corresponding column

of D′
j in G. Since the induced groupings are also flat groupings, D̄ = mean(G′) is thus the unique empirical

Fréchet mean for D′
1, . . . , D

′
B.

We begin with a computation of the hugging function analogous to Definition 13 for the space of persis-
tence diagrams.

Lemma 15. For any Dj ∈ {D1, . . . , DL}, we have

κD̄
D⋆

(Dj) = κD⋆

D̄
(Dj) = 1 (13)

Proof. For any λ1, . . . , λL ≥ 0 with
∑L

j=1 λj = 1, consider the persistence diagram DΛ such that the off-

diagonal points are given by GΛ
i =

∑L
i=j λjG

j
i for every selection Gi. Let γΛ(t) be the geodesic from D⋆ to

DΛ. For any 0 ≤ t, s ≤ 1, the optimal matching between γΛ(t) and γΛ′(s) is given by tGΛ
i + (1 − t)Ḡi 7→

sGΛ′

i + (1 − s)Ḡi. Therefore,

cos∠D⋆
(logD⋆

(DΛ), logD⋆
(DΛ′))

= lim
t,s→0

W2
2(D⋆, γΛ(t)) +W2

2(D⋆, γΛ′(s)) −W2
2(γΛ(t), γΛ′ (s))

2W2(D⋆, γΛ(t))W2(D⋆, γΛ′(s))

= lim
t,s→0

∑
i=1 t

2‖GΛ
i − Ḡi‖

2 +
∑

i=1 s
2‖GΛ′

i − Ḡi‖
2 −

∑
i=1 ‖tG

Λ
i − sGΛ′

i − (t− s)Ḡi‖
2

2ts

√∑

i=1

‖GΛ
i − Ḡi‖

2

√∑

i=1

‖GΛ′

i − Ḡi‖
2

=

∑
i=1〈G

Λ
i − Ḡi,G

Λ′

i − Ḡi〉√∑

i=1

‖GΛ
i − Ḡi‖

2

√∑

i=1

‖GΛ′

i − Ḡi‖
2

=
W2

2(D⋆, DΛ) +W2
2(D⋆, DΛ′)−W2

2(DΛ, DΛ′)

2W2(D⋆, DΛ)W2(D⋆, DΛ′)
.

By definition of the cone metric (cf. (1)), we have

C2
D⋆

(logD⋆
(DΛ), logD⋆

(DΛ′))

=W2
2(D⋆, DΛ) +W2

2(D⋆, DΛ′)− 2W2(D⋆, DΛ)W
2
2(D⋆, DΛ′) cos∠D⋆

(logD⋆
(DΛ), logD⋆

(DΛ′))

=W2
2(DΛ, DΛ′),

which implies that κDΛ

D⋆
(DΛ′ ) = 1. Specifically, κD̄

D⋆
(Dj) = 1 for all j = 1, . . . , L.

For the hugging function at D̄, a similar computation gives

cos∠D̄(logD̄(DΛ), logD̄(DΛ′)) =
W2

2(D̄,DΛ) +W2
2(D̄,DΛ′)−W2

2(DΛ, DΛ′)

2W2(D̄,DΛ)W2(D̄,DΛ′)
.

Thus, the cone metric satisfies C2
D̄
(logD̄(DΛ), logD̄(DΛ′)) = W2

2(DΛ, DΛ′), which implies κD⋆

D̄
(Dj) = 1 for

all j = 1, . . . , L.

We now prove the following finite sample convergence rate for flat groupings.

Theorem 16. Let ρ = 1
L

∑L
i=1 Di be a discrete probability measure on D2, and D′

1, . . . , D
′
B be i.i.d. samples

from ρ. Assume G is an flat grouping for D1, . . . , DL. Let D⋆ be the population Fréchet mean and D̄ be the
empirical Fréchet mean. Then

E[W2
2(D̂,D⋆)] ≤

σ2

B
, (14)

where σ2 = V(G) is the variance of the grouping.
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Proof. By Theorem 14 and Lemma 15, we have

W2
2(D⋆, D̄) =

∫
(W2

2(D⋆, D)−W2
2(D̄,D)) dµ(D).

By the equality of (11) in Theorem 11, we have

2W2
2(D⋆, D̄) =

∫
(W2

2(D⋆, D) +W2
2(D⋆, D̄)−W2

2(D̄,D)) dµ(D)

= 2

∫
W2(D⋆, D)W2(D⋆, D̄) cos∠⋆(log⋆D, log⋆D̄) dµ(D)

= 2

∫
〈log⋆D, log⋆D̄〉⋆ dµ(D)

= 2〈log⋆D, log⋆D̄〉⋆,

where log⋆D denotes the mean of the pushforward empirical measure (log⋆)#µ. Note that log⋆(supp(µ)) ⊆
log⋆(supp(µ)) ⊆ H⋆D2. In the Hilbert subcone, we have W2

2(D⋆, D̄) ≤ C⋆(log⋆D, o⋆)C⋆(log⋆D̄, o⋆). Since
C⋆(log⋆D̄, o⋆) = W2(D⋆, D̄), then E[W2

2(D⋆, D̄)] ≤ E[C2
⋆(log⋆D, o⋆)].

In Hilbert spaces, we know that the empirical mean log⋆D converges to the population mean E[(log⋆)#µ] =
o⋆ in the following sense

E[C2
⋆(log⋆D, o⋆)] =

σ2

B

where σ2 =

∫
C2

⋆(log⋆D, o⋆)] dµ(D) =

∫
W2

2(D,D⋆) dµ(D), thus completing the proof.

5 Discussion

In this paper, we introduced the notion of flat groupings for sets of persistence diagrams, which possess
desirable geometric properties that have direct implications on statistical properties in the space of persistence
diagrams. Flat groupings allow us to fill an important gap in the theory of statistical persistent homology
over nearly the past decade. However, in practice, real data often generates persistence diagrams exhibiting
persistence points near the diagonal which can make it difficult to construct flat groupings in practice. Given
a set of persistence diagrams, a future direction of research is to determine an appropriate cropping of off-
diagonal points so that a flat grouping of the persistence points may be constructed, and as a consequence, to
approximate the Fréchet mean. Existing work by Fasy et al. (2014) proposes a statistical approach to crop off-
diagonal points based on the construction of confidence regions around the diagonal; the driving assumption
here is that topological features near the diagonal are considered “noise.” However, more recent work by
Reani and Bobrowski (2021) demonstrates that persistence diagrams with many persistence points near the
diagonal may in fact correspond to datasets (point clouds) with very clear topological signal. The question
of finding an appropriate cropping that preserves “true” signal and concurrently allows the construction of
flat groupings is thus a different question than existing methods of topological signal processing or cropping.

An alternative measure of centrality of data is the median, which may also be defined for persistence
diagrams and has a similar characterization as the Fréchet mean (Turner, 2020). However, understanding
this measure entails an entirely different study, since the median is the minimum of the Fréchet function (2)
with respect to the 1-Wasserstein distance, which would require studying the space (D1,W1). Less is known
about the geometry of (D1,W1), since it is not any Alexandrov space of curvature bounded from below or
above (Turner, 2013), thus none of the prior results established by Le Gouic et al. (2019) and used in this
work are applicable; new tools and strategies would need to be constructed.
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Mathématique 358 (4), 489–495.

Le Gouic, T., Q. Paris, P. Rigollet, and A. J. Stromme (2019). Fast convergence of empirical barycenters in
Alexandrov spaces and the Wasserstein space. arXiv preprint arXiv:1908.00828 .

Mileyko, Y., S. Mukherjee, and J. Harer (2011). Probability measures on the space of persistence diagrams.
Inverse Problems 27 (12), 124007.

Munch, E., K. Turner, P. Bendich, S. Mukherjee, J. Mattingly, and J. Harer (2015). Probabilistic Fréchet
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