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Abstract: Bayesian methods have been rapidly developed due to the important role of explicable
causality in practical problems. We develope geometric approaches to Bayesian inference of Pareto
models, and give an application to the analysis of sea clutter. For Pareto two-parameter model, we
show the non-existence of α-parallel prior in general, hence we adopt Jeffreys prior to deal with the
Bayesian inference. Considering geodesic distance as the loss function, an estimation in the sense of
minimal mean geodesic distance is obtained. Meanwhile, by involving Al-Bayyati’s loss function we
gain a new class of Bayesian estimations. In the simulation, for sea clutter, we adopt Pareto model
to acquire various types of parameter estimations and the posterior prediction results. Simulation
results show the advantages of the Bayesian estimations proposed and the posterior prediction.

Keywords: Bayesian inference; Pareto two-parameter model; Jeffreys prior; mean geodesic estimation;
Al-Bayyati’s loss function

MSC: 62C10; 62F15

1. Introduction

Geometric method plays an important role in Bayesian statistics. At present, there
are two main ways to study Bayesian inference through geometric methods. An idea is to
regard the prior distribution, the probability distribution of the statistical model and the
posterior distribution as the vectors in Hilbert space L2(Θ). The research is then carried
out through the geometric properties of Hilbert space. M. de Carvalho [1] used the cosine
of the angle between vectors to study their relationship with each other, where the cosine
of priors represents coherency of opinions of experts, the cosine of prior and probability
density represents prior-data agreement and the cosine of prior and posterior represents
sensitivity of the posterior to the prior specification. Furthermore, M. de Carvalho used
Monte Carlo Markov Chain to give an estimation of the cosine value for further analysis.
R. Kulhavy [2] viewed statistical inference as an approximation of the empirical density
rather than an estimation of a true density, and built a model by analyzing the trace of
orthogonal projection of conditional empirical distributions onto the model manifold. He
also used Kerridge inaccuracy as a generalized empirical error. Kerridge inaccuracy is a
generalization of Shannon entropy. It is used to measure the difference between observed
distribution Q = (q1, · · · , qn) and true distribution P = (p1, · · · , pn), which is defined by
I(P, Q) = −∑i pi log(qi). The advantage of this idea is providing a unified treatment to all
pieces of Bayesian theorem. However, the finite parameter space measure is required.

Another idea is to give the statistical manifolds Riemannian metrics. J.A. Hartigan [3–5]
proposed a reparametrization invariance prior-α-parallel prior and later J. Takeuchi and
S. Amari [6,7] clarified an interesting connection between the information geometrical
properties of the statistical model and the existence of the α-parallel prior. α-parallel prior,
as an uninformed prior, is invariant under the coordinate transformation and can well
reflect the intrinsic properties of the model. It is worth noting that the general α-parallel
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prior does not always exist, but 0-parallel prior, Jeffreys prior, always exists. After obtaining
the corresponding prior, subsequent Bayesian inference and prediction can be carried out.
J. Takeuchi and S. Amari studied the asymptotic properties of minimum description length
(MDL) estimation and projected Bayesian estimation of general exponential families, and
extended it to curve exponential families. The differential geometry of curved exponential
families are given by S. Amari and M. Kumon [8,9].

In many confidential fields, historical data is difficult to obtain. Hence one of the
advantages of the above idea is giving prior a good theoretical basis. Besides, this idea
can illustrate the geometric meaning of the common Bayesian estimations and provide an
estimation in the sense of minimal mean geodesic distance. In the application of target
detection, maritime radar performance is often seriously interfered and suppressed by sea
clutter, especially for the detection of weak targets on the sea. Therefore, whether sea clutter
can be effectively suppressed is the key factor to improve the performance of maritime radar
systems. Thus the study of sea clutter is of vital importance [10]. With the development
of radar hardware technology, the statistical distribution histogram of radar sea clutter
appears long “trailing tail”, which is manifested as frequent sea peak phenomenon, and
the amplitude distribution of clutter seriously deviates from the Rayleigh distribution
proposed before. In order to solve this problem, an improved Rayleigh model-compound
Gaussian model is proposed [11]. The compound Gaussian model successfully illustrates
the formation mechanism of sea clutter, and is more successful than the single point
probability distribution model in terms of data fitting. In the compound Gaussian model,
K distribution and Pareto distribution are two typical representatives. When the structural
component is Gamma distribution, the compound Gaussian model is K distribution. When
the structural component is inverse Gamma distribution, the compound Gaussian model is
Pareto distribution. In 2010, M. Farshchian and F.L. Posner [12] analyzed the sea clutter
data in X-band, and used Pareto distribution to fit data. They found that the fitting effect of
the tail was better than K distribution.

The paper is organized as follows—Section 2 introduces the preliminary including
some geometric structure of statistical manifolds and some concepts of Bayesian inference.
In Section 3, we introduce the geometric approaches for Bayesian inference by using α-
parallel connection, and propose a geometric loss function based on geodesic distance. In
Section 4, we prove that Pareto two-parameter model does not have general α-parallel
prior. Then we adopt Jeffreys prior to provide the explicit expressions of estimations in the
sense of minimal mean geodesic distance. Furthermore, we come up with theorems under
Al-Bayyati’s loss function to obtain a new class of Bayesian estimations. The bounds of
certain expressions without closed forms are given. Besides, we show the existence of the
best parameter in Al-Bayyati’s loss function. In Section 5, we show the advantages of the
proposed Bayesian estimations and the posterior prediction distributions.

2. Preliminaries
2.1. α-Parallel Prior

Definition 1 ([7,13]). For a statistical manifold M = {p(x; θ)|
∫

p(x; θ)dx = 1, p(x; θ) > 0,
θ ∈ Θ ⊂ Rd}, define an affine connection ∇(α) on M with the following coefficients

Γ(α)i
jk := Γ(0)i

jk +
1− α

2
Tsjkgis, Γ(0)i

jk := Γ(0)
s:jkgis,

where α ∈ R is an arbitrary real number, gij = E
[
∂il∂jl

]
,
(

gij) is the inverse matrix
(

gij
)
,

Γ(0)
s:jk = E

[
∂sl∂j∂kl

]
, Tsjk = E

[
∂sl∂jl∂kl

]
, l := log p(x; θ) denotes the log likelihood function and

E[·] denotes the expectation with respect to the observation x.

Definition 2 ([7]). An affine connection ∇ is called locally equiaffine if around each point x of M,
there is a parallel volume element, that is, a nonvanishing d-form w such that ∇w = 0.
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An equiaffine connection ∇ on M is a torsion-free affine connection with a parallel volume
element w on M.

If w is a volume element on M such that ∇w = 0, then we say that (∇, w) is an affine
structure on M.

For a statistical manifold M, we may represent the α-parallel volume element w as

w = π(θ)dθ1 ∧ · · · ∧ dθd

for a certain coordinate θ =
(

θ1, · · ·, θd
)
∈ Θ ⊂ Rd, where π is the volume form on the

whole manifold. We take π(θ) as a prior distribution on the parameter space Θ.

Definition 3 ([7]). In a statistically equiaffine manifold, for a fixed α ∈ R, we call the above form
of π an α-parallel prior.

When α = 1, 1-parallel prior is called maximum likelihood estimation (MLE) prior
proposed by J.A. Hartigan [5]. Note that there always exists a∇(0)-parallel volume element
w ∝

√
g(θ)dθ1 ∧ · · · ∧ dθd, where g is the determinant of the Fisher metric, the invariant

volume element in a Riemannian manifold
(

M,
(

gij
))

. This prior distribution π ∝
√

g(θ)
is called the Jeffreys prior.

J. Takeuchi and S. Amari gave a sufficient and necessary condition for the existence of
α-parallel prior.

Proposition 1 ([6]). For a statistical manifold M with the α connection ∇(α), if α 6= 0, then there
exists an α-parallel prior if and only if

∂iTj − ∂jTi = 0 (1)

where Ti := Tikl gkl .

2.2. Bayesian Inference

For the random variate x subject to the distribution p(x; θ), and let π(θ) be the prior
distribution of θ. The posterior distribution π(θ|x) is given by the formula

π(θ|x) = p(x; θ)π(θ)∫
Θ p(x; θ)π(θ)dθ

.

Now, we introduce some notations for later uses. Let θ̂MD be the maximum posterior
estimation. Let θ̂Me be the posterior median estimation which is the median of the posterior
distribution. Let θ̂E be the posterior expectation estimation which is the expectation of the
posterior distribution.

These three estimations are also known as Bayesian estimations of θ. When θ̂ = θ̂E,
the posterior mean square value reaches the minimum. Hence θ̂E = E[θ|x] is often taken as
the Bayesian estimation.

Let the random variable X ∼ p(x; θ). If one does not know the observation data, the
marginal distribution m(x) is also known as the prior prediction distribution. If one obtains
the observation data x = (x1, · · ·, xn), the distribution of unknown observation values
could be obtained by the posterior distribution π(θ|x):
1. Predict the future observations of the same population p(x̃; θ)

m(x̃|x) =
∫

Θ
p(x̃; θ)π(θ|x)dθ.
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2. Predict the observations of another population g(z; θ)

m(z|x) =
∫

Θ
g(z; θ)π(θ|x)dθ,

where m(x̃|x) or m(z|x) is called the posterior predictive distribution.

3. The Geometric Approaches for Bayesian Inference

In this section, we introduce the basic methods of Bayesian inference with geometric
means. The idea of geometry is embodied in the selection of priors and loss functions.

3.1. The Geometric Prior

The idea of geometric methods is to extend the uniform distribution naturally and
construct geometric priors suitable for multidimensional and measure infinite-dimensional
parameter space according to the idea that probability measure is proportional to vol-
ume element. The studied probability distribution family can be regarded as a statistical
manifold with Riemannian metrics.

Fisher information matrix is the most widely used Riemannian metric on statistical
manifolds, and the prior generated by its corresponding volume element is Jeffreys prior.
α-connection is a natural extension of the Levi-Civita connection corresponding to Fisher
information matrix. Its corresponding volume element is α-parallel volume element, and
the generated prior is called α-parallel prior. In particular, the 0-parallel prior is the
Jeffreys prior.

α-parallel prior reflects the intrinsic property of the model and does not depend on
the selection of parameters. Although Jeffreys prior must exist, general α-parallel prior
does not necessarily exist. (1) gives the necessary and sufficient conditions for the existence
of general α-parallel prior.

Therefore, when one deals with Bayesian inference by geometric methods, the first
step is to select the appropriate geometric priors, that is, to verify the existence of α-parallel
prior in a specific statistical manifold.

With Riemannian metric, we can acquire geometric information of the statistical
manifold, such as connection, curvature, geodesic and geodesic distance [14,15]. Through
geometric priors, the joint posterior density of the parameters can be obtained, and then the
corresponding Bayesian estimation and Bayesian posterior prediction are carried out [16].

3.2. The Geometric Loss Functions

In this subsection, we show the geometric meaning of the common Bayesian estima-
tions and propose a new geometric approach of choosing loss functions.

Proposition 2. Suppose that θ = (θ1, . . . , θd) ∈ Θ ⊂ Rd. Let π(θ|x) be the joint posterior distri-
bution and θ̂ =

(
θ̂1, . . . , θ̂d

)
be the estimation of θ. For the loss function l1

(
θ, θ̂
)
= ∑d

i=1 |θ̂i − θi|,
the corresponding estimation is θ̂Me =

(
θ̂1Me, . . . , θ̂dMe

)
. For the loss function l2

(
θ, θ̂
)
= ∑n

i=1(θ̂i−
θi)

2, the corresponding estimation is θ̂E =
(
θ̂1E, . . . , θ̂dE

)
.

Proof. Denote dθ̌i = dθ1 · · ·dθi−1dθi+1 · · ·dθd. Let π(θi|x) be the marginal posterior
density and Pr(θi ≤ t|x) be its cumulative distribution. Assume that Pr(θi ≤ a|x) = 0 and
Pr(θi ≤ b|x) = 1, where a, b ∈ R and they may be infinite.

For the loss function l1(θ, θ̂), we define
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R1(θ, θ̂) =
∫

Θ
l1(θ, θ̂)π(θ|x)dθ

=

(∫ θ̂i

a
−
∫ b

θ̂i

) ∫
θ̌i

(θ̂i − θi)π(θ|x)dθ̌idθi + ∑
j 6=i

∫
Θ
|θ̂j − θj|π(θ|x)dθ

=θ̂i

(∫ θ̂i

a
−
∫ b

θ̂i

)
π(θi|x)dθi −

(∫ θ̂i

a
−
∫ b

θ̂i

)
θiπ(θi|x)dθi + ∑

j 6=i

∫
Θ
|θ̂j − θj|π(θ|x)dθ.

Then we get

∂R1

∂θ̂i
=
∫ θ̂i

a
π(θi|x)dθi −

∫ b

θ̂i

π(θi|x)dθi.

Let ∂R1
∂θ̂i

= 0, we have θ̂i = θ̂iMe.

For the loss function l2(θ, θ̂), we define

R2(θ, θ̂) =
∫

Θ
l2(θ, θ̂)π(θ|x)dθ =

d

∑
i=1

∫
Θ
(θ̂i − θi)

2π(θ|x)dθ.

Then we obtain

∂R2

∂θ̂i
= 2

∫ b

a
(θ̂i − θi)π(θi|x)dθi

Hence, ∂R2
∂θ̂i

= 0 implies that θ̂i = θ̂iE.

If the loss function is the distance induced by ‖ · ‖1, then by Proposition 2 we see that
the corresponding risk function represents the average distance between the estimated
value and the true value. Besides, the posterior median estimation of parameters minimizes
risk function, which means that this estimation has the minimum mean distance from the
posterior density.

If the loss function is the distance induced by ‖ · ‖2, then the corresponding risk
function represents the average value of the square of the distance between the estimated
value and the true value. The obtained estimation is the posterior expectation of parameters,
which has the minimum mean square error from the posterior density.

These two kinds of loss functions above are distances or increasing functions of dis-
tances in Rn. However, in the parameter space endowed with corresponding Riemannian
metric, the distance between two points is geodesic distance instead of Euclidean distance.

Hence, in order to make the estimation more accurate, we take the geodesic distance
or its increasing function as a loss function, the corresponding risk function represents the
geodesic distance between the estimated value and the true value. Before that, we need the
following definition.

Definition 4. (Mean Geodesic Estimation) Assume that the statistical manifold M = {p(x; θ)}
is equipped with Fisher Riemannian metric (gij). Let π(θ|x) be the joint posterior distribution and
d(θ, θ̂) be the geodesic distance between θ and θ̂, where θ̂ is the estimation of θ. Let F: R→ R be
an increasing function. Denote D(θ, θ̂) = F ◦ d(θ, θ̂). The risk function with the loss function
D(θ, θ̂) is

R(θ, θ̂) =
∫

Θ
D(θ, θ̂)π(θ|x)dθ. (2)

The estimation minimizing R(θ, θ̂) is called mean geodesic estimation (MGE) and denoted
by θ̂MGE.
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The geometric priors, the corresponding geodesic distance and the corresponding
Bayesian inference depend on the choice of the Riemannian metric. Hence choosing a
proper Riemannian metric is of great importance to Bayesian inference.

4. Bayesian Inference on Pareto Model
4.1. The Geometric Structure of Pareto Two-Parameter Model

The probability density function of Pareto two-parameter distribution satisfies

p(x; α, β) =
βαβ

xβ+1 I[x≥α], α > 0, β > 0, (3)

where α is called the scale parameter and β is called the shape parameter.
Its logarithmic likelihood function is

l(x; α, β) = log p(x; α, β) = log β + β log α− (β + 1) log x (4)

Noting that the Pareto distribution family does not meet the common regularity
condition, hence the Fisher-Rao metric on the Pareto distribution family is not equal to the
negative Hessian matrix.

Furthermore, from References [17,18] we can get the geometric structure of Pareto
model. On Pareto two-parameter distribution family, the tensor form of Fisher-Rao met-
ric satisfies

g =
β2

α2 dα⊗ dα +
1
β2 dβ⊗ dβ, (5)

which is isometric to the upper half of the Poincaré plane. Hence, Pareto two-parameter
model (P, g) is a Riemannian manifold endowed with Riemannian metric g. The volume
form, the connection form, the curvature form, the Christoffel symbols and the geodesic
distance formula on (P, g) are given as follows

dv = θ1 ∧ θ2 =
1
α

dα ∧ dα (6)

w1
2 =

β

α
dα (7)

Ω1
2 = dw1

2 = − 1
α

dα ∧ dα = −Kdv (8)


∇∂1 ∂1 = − 1

α ∂1 − β3

α2 ∂2

∇∂2 ∂1 = ∇∂1 ∂2 = 1
β ∂1

∇∂2 ∂2 = − 1
β ∂2

(9)

d((α0, β0), (α1, β1)) = arcosh
(

1 +
β0β1(log α0 − log α1)

2

2
+

(β0 − β1)
2

2β0β1

)
. (10)

4.2. The Existence of α-Parallel Prior on Pareto Two-Parameter Model

Theorem 1. When α 6= 0, Pareto two-parameter model does not have any α-parallel prior.
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Proof. Denote ∂1 = ∂
∂α , ∂2 = ∂

∂β . Then by calculation, we can obtain


T111 = E[∂1l∂1l∂1l] = β3

α3

T222 = E[∂2l∂2l∂2l] = − 2
β3

T112 = T121 = T211 = E[∂1l∂1l∂2l] = 0
T122 = T221 = T212 = E[∂1l∂2l∂2l] = 1

αβ

(11)

Hence, we get {
T1 = T1ikgik = 2β

α

T2 = T2ikgik = − 2
β

and

∂iTj − ∂jTi = ±
2
α

dβ ∧ dα.

It is obvious that α 6= 0 means ∂iTj − ∂jTi 6= 0. Therefore, according to Proposition 1,
we find that Pareto two-parameter model does not have any α-parallel prior when α 6= 0.

From Theorem 1, we see that Pareto two-parameter model only has the 0-parallel

prior (Jeffreys prior). Its Jeffreys prior π(α, β) satisfies π(α, β) ∝
√

α2

β2
1
β2 = 1

α , α > 0, β > 0,

which is a generalized prior density whose integral is infinite. We assume that π(α, β) = 1
α ,

α > 0, β > 0.

4.3. Bayesian Estimations of Pareto Model

Before we proceed, we state necessary results from Reference [17].
The joint probability density of a simple random sample on Pareto model is

p(x; α, β) = βnαnβ

(
n

∏
i=1

xi

)−β−1

I[minn
i=1 xi≥α]. (12)

The posterior distribution of Pareto model under Jeffreys prior is obtained by Bayesian
formula

π(α, β|x) = n(q2(x)− n log q1(x))n

τ(n)
βnαnβ−1 exp(−q2(x)β)I[0≤α≤q1(x)], (13)

where q1(x) = minn
i=1 xi, q2(x) = ∑n

i=1 log xi. Furthermore, by calculation we can see that
the maximum likelihood estimation and the maximum posterior estimation of α, β are
given as

âMLE = âMD = q1(x)
β̂MLE = β̂MD = n

∑n
i=1 log xi−n log(minn

i=1 xi)
= n

q2(x)−n log q1(x) . (14)

The marginal posterior density of α determined by the joint posterior density π(α, β|x) is

π(α|x) = n2(q2(x)− n log q1(x))n

α(q2(x)− n log α)n+1 I[0≤α≤q1(x)] (15)

and its cumulative distribution function is
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Pr(α ≤ t|x) =
(

1 + β̂MLE log
α̂MLE

t

)−n
, 0 ≤ t ≤ q1(x). (16)

The marginal posterior density of β determined by the joint posterior density π(α, β|x) is

π(β|x) = βn−1(q2(x)− n log q1(x))n

τ(n)
exp(−(q2(x)− n log q1(x))β). (17)

Under posterior distribution (13), when β is known, the conditional posterior density
of α is

π(α|x, β) =
nβαnβ−1

qnβ
1 (x)

I[0≤α≤q1(x)] (18)

and its cumulative distribution function is

Pr(α ≤ t|x, β) =

(
t

q1(x)

)nβ

, 0 ≤ t ≤ q1(x). (19)

When α is known, the conditional posterior density of β is

π(β|x, α) =
βn(q2(x)− n log α)n+1

τ(n + 1)
exp(−(q2(x)− n log α)β). (20)

4.3.1. Mean Geodesic Estimation

The geodesic distance between (α, β) and (α̂, β̂) is expressed as

d((α, β), (α̂, β̂)) = arcosh

(
1 +

ββ̂(log α− log α̂)2

2
+

(β− β̂)2

2ββ̂

)
. (21)

Hence, the distance function is a monotone function of

1 +
ββ̂(log α− log α̂)2

2
+

(β− β̂)2

2ββ̂
. (22)

We denote (22) as

D((α, β), (α̂, β̂)) = 1 +
ββ̂(log α− log α̂)2

2
+

(β− β̂)2

2ββ̂
. (23)

By the discussion in the Section 3, when α and β are unknown, D((α, β), (α̂, β̂)) can be
taken as the loss funtion, and the estimations α̂MGE and β̂MGE in the sense of minimum
mean geodesic distance can be obtained. When β = β0 or α = α0, Dβ0((α, β0), (α̂, β0)) or
Dα0((α0, β), (α0, β̂)) can be taken as the loss function respectively, and we can get the mean
geodesic estimation α̂MGE(x|β) or β̂MGE(x|α).

Theorem 2. When α and β are unknown, we have

α̂MGE =
α̂MLE

exp
(

1
nβ̂MLE

) , β̂MGE =

√
2n2(n− 1)
2n3 + n + 1

β̂MLE.
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Proof. Denote f (α) = Eβ[π(α, β|x)], then have

f (α) =
n2(n + 1)(q2(x)− n log q1(x))n

α(q(x)− n log α)n+2 , 0 ≤ α ≤ q1(x).

Let F(t) =
∫ t

0 f (α)dα, then we have

F(t) =
n(q2(x)− n log q1(x))n

(q(x)− n log t)n+1 , 0 ≤ t ≤ q1(x).

Denote g(t) = F(t)
t , then

G(s) =
∫ s

0
g(t)dt =

(q2(x)− n log q1(x))n

n(q(x)− n log s)n , 0 ≤ s ≤ q1(x).

Denote h(t) = G(t)
t , then have

H(v) =
∫ v

0
h(t)dt =

(q2(x)− nlogq1(x))n

n2(n− 1)(q(x)− n log v)n−1 , 0 ≤ v ≤ q1(x).

The risk function is

R((α, β), (α̂, β̂)) =
∫ α̂MLE

0

∫ +∞

0
D((α, β), (α̂, β̂))π(α, β|x)dβdα.

Firstly, we show that α̂MGE = α̂MLE

exp
(

1
nβ̂MLE

) . Since

∂R
∂α̂

=
β̂

α̂

∫ α̂MLE

0

∫ +∞

0
(log α− log α̂)βπ(α, β|x)dβdα,

when ∂R
∂α̂ = 0, we have

log α̂MGE =

∫ α̂MLE
0 log α · Eβ[π(α, β|x)]dα∫ α̂MLE

0 Eβ[π(α, β|x)]dα
.

Combining ∫ α̂MLE

0
Eβ[π(α, β|x)]dα = F(α̂MLE) = β̂MLE

with ∫ α̂MLE

0
log α · Eβ[π(α, β|x)]dα =

∫ α̂MLE

0
log tdF(t)

= β̂MLE log α̂MLE − G(α̂MLE)

= β̂MLE

(
log α̂MLE −

1
nβ̂MLE

)
we get

α̂MGE =
α̂MLE

exp
(

1
nβ̂MLE

) .
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Secondly, we will show that β̂MGE =
√

2n2(n−1)
2n3+n+1 β̂MLE. In fact, from

∂R
∂β̂

=
∫ α̂MLE

0

∫ +∞

0

(
β(log α− log α̂)2

2
− β

β̂2
+

1
β

)
π(α, β|x)dβdα

we see that when ∂R
∂β̂

= 0, we have

β̂MLE

β̂2
MGE

=
F(α̂MLE)

β̂2
MGE

=
∫ α̂MLE

0

∫ +∞

0

1
β

π(α, β|x)dβdα +
1
2

∫ α̂MLE

0
(log α− log α̂)2 f (α)dα.

Noting that∫ α̂MLE

0

∫ +∞

0

1
β

π(α, β|x)dβdα =
∫ +∞

0

1
β

π(β|x)dβ

=
(q2(x)− n log q1(x))n

τ(n)

∫ +∞

0
βn−2 exp(−(q2(x)− n log q1(x))β)dβ

=
q2(x)− n log q1(x)

n− 1

=
n

(n− 1)β̂MLE

and∫ α̂MLE

0
(log α− log α̂)2 f (α)dα =

∫ α̂MLE

0
(log t− log α̂)2dF(t)

= β̂MLE(log α̂MLE − log α̂)2 − 2
∫ α̂MLE

0
(log t− log α̂)g(t)dt

= β̂MLE
1(

nβ̂MLE
)2 − 2G(α̂MLE)

1
nβ̂MLE

+ 2H(α̂MLE)

= − 1
n2 β̂MLE

+
2

n(n− 1)β̂MLE

=
n + 1

n2(n− 1)β̂MLE

we have

β̂MLE

β̂2
MGE

=
n

(n− 1)β̂MLE
+

n + 1
2n2(n− 1)β̂MLE

=
2n3 + n + 1

2n2(n− 1)β̂MLE
.

As a result, we obtain β̂MGE =
√

2n2(n−1)
2n3+n+1 β̂MLE.

Theorem 3. When β is known, we have α̂MGE(x|β) = α̂MLE

exp
(

1
nβ

) . And when α is known, we have

β̂MGE(x|α) =
√

n(n+1)
q2(x)−n log α

.

Proof. When β is known, the risk function is

R((α, β), (α̂, β)) =
∫ α̂MLE

0
Dβ((α, β), (α̂, β))π(α|x, β)dα.

Since

dR
dα̂

=
β2

α̂

∫ α̂MLE

0
(log α− log α̂)π(α|x, β)dα
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when dR
dα̂ = 0, we have

log α̂MGE(x|β) =
∫ α̂MLE

0
log α · π(α|x, β)dα

=
∫ α̂MLE

0
log tdPr(α ≤ t|x, β)

= log α̂MLE −
∫ α̂MLE

0

1
t

Pr(α ≤ t|x, β)dt

= log α̂MLE −
1

nβ
.

Hence

α̂MGE(x|β) = α̂MLE

exp
(

1
nβ

) .

When α is known, the risk function is

R
(
(α, β), (α, β̂)

)
=
∫ +∞

0
Dα

(
(α, β), (α, β̂)

)
π(β|x, α)dβ.

Since

dR
dβ̂

=
∫ +∞

0

(
− β

β̂2
+

1
β

)
π(β|x, α)dβ,

when dR
dβ̂

= 0, we have

β̂MGE(x|α) =
∫ +∞

0 βπ(β|x, α)dβ∫ +∞
0

1
β π(β|x, α)dβ

.

Noting that
∫ +∞

0
βπ(β|x, α)dβ =

(q2(x)− n log α)n+1

τ(n + 1)

∫ +∞

0
βn+1 exp(−(q2(x)− n log α)β)dβ

=
n(n + 1)

(q2(x)− n log α)2
(q2(x)− n log α)n+1

τ(n + 1)

∫ +∞

0
βn−1 exp(−(q2(x)− n log α)β)dβ

=
n(n + 1)

(q2(x)− n log α)2

∫ +∞

0

1
β

π(β|x, α)dβ

hence we have β̂MGE(x|α) =
√

n(n+1)
q2(x)−n log α

.

4.3.2. Bayesian Estimations under Al-Bayyati’s Loss Function

The Al-Bayyati’s loss function was stated by Reference [19] as

l(θ̂, θ) = θc(θ̂ − θ)2, (24)

where c is a real number. Next, we use Al-Bayyati’s loss function to derive the Bayesian
estimation of Pareto model.

Proposition 3. Assume that θ ∈ Θ ⊂ R. Under Al-Bayyati’s loss function, the Bayesian estima-
tion of parameter θ is given by

θ̂Bc =

∫
Θ θc+1π(θ|x)dθ∫

Θ θcπ(θ|x)dθ
. (25)
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Proof. Since the risk function

R(θ̂, θ) =
∫

Θ
θc(θ̂ − θ)2π(θ|x)dθ,

we have

dR(θ̂, θ)

dθ̂
= θ̂

∫
Θ

θcπ(θ|x)dθ −
∫

Θ
θc+1π(θ|x)dθ.

Then we have

θ̂Bc =

∫
Θ θc+1π(θ|x)dθ∫

Θ θcπ(θ|x)dθ
,

by letting dR(θ̂,θ)
dθ̂

= 0.

Using Al-Bayyati’s loss function, α̂Bc lacks the simple display expression. Thus we
give the upper and lower bound estimations.

Theorem 4. Using Al-Bayyati’s loss function and assuming c ≥ 0, we find that when β is
unknown, then α̂Bc satisfies(

nβ̂MLE + c
)(
(n− 1)β̂MLE − (c + 1)

)
(n− 1)nβ̂2

MLE
α̂MLE ≤ α̂Bc ≤

(n− 1)nβ̂2
MLE(

nβ̂MLE + c + 1
)(
(n− 1)β̂MLE − c

) α̂MLE.

And when α is unknown, then

β̂Bc =
(

1 +
c
n

)
β̂MLE.

Furthermore, there exists c0 such that β̂Bc0
= β0, where β0 is the real value of shape parameter β.

Proof. When β is unknown, we have∫ α̂MLE

0
αc+1π(α|x)dα =

∫ α̂MLE

0
tc+1dPr(α ≤ t|x)

=
(

tc+1Pr(α ≤ t|x)
)∣∣∣α̂MLE

0
− (c + 1)

∫ α̂MLE

0
tcPr(α ≤ t|x)dt

= α̂c+1
MLE − (c + 1)

∫ α̂MLE

0
tcPr(α ≤ t|x)dt.

Noting that

∫ α̂MLE

0
tcdPr(α ≤ t|x) =

∫ α̂MLE

0
tc
(

1 + β̂MLE log
α̂MLE

t

)−n
dt

= α̂c+1
MLE

∫ +∞

0
exp(−(c + 1)u)

(
1 + uβ̂MLE

)−n
du

≤ α̂c+1
MLE

∫ +∞

0

(
1 + uβ̂MLE

)−n
du

=
α̂c+1

MLE

(n− 1)β̂MLE
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and that ∫ α̂MLE

0
tcdPr(α ≤ t|x) = α̂c+1

MLE

∫ +∞

0
exp(−(c + 1)u)

(
1 + uβ̂MLE

)−n
du

≥ α̂c+1
MLE

∫ +∞

0
exp(−(c + 1)u)

(
exp

(
uβ̂MLE

))−n
du

= α̂c+1
MLE

∫ +∞

0
exp

(
−
(
nβ̂MLE + c + 1

)
u
)
du

=
α̂c+1

MLE

nβ̂MLE + c + 1

we have∫ α̂MLE

0
αc+1π(α|x)dα ≥ α̂c+1

MLE − (c + 1)
α̂c+1

MLE

(n− 1)β̂MLE
=

(n− 1)β̂MLE − (c + 1)
(n− 1)β̂MLE

α̂c+1
MLE∫ α̂MLE

0
αc+1π(α|x)dα ≤ α̂c+1

MLE −
(c + 1)α̂c+1

MLE

nβ̂MLE + c + 1
=

nβ̂MLE

nβ̂MLE + c + 1
α̂c+1

MLE.

Similarly, we can get

(n− 1)β̂MLE − c
(n− 1)β̂MLE

α̂c
MLE ≤

∫ α̂MLE

0
αcπ(α|x)dα ≤ nβ̂MLE

nβ̂MLE + c
α̂c

MLE.

Furthermore, by Proposition 3, we have

α̂Bc =
1− (c + 1)

∫ +∞
0 exp(−(c + 1)u)

(
1 + uβ̂MLE

)−n
du

1− c
∫ +∞

0 exp(−cu)
(
1 + uβ̂MLE

)−n
du

α̂MLE

and

α̂Bc ≥
(n− 1)β̂MLE − (c + 1)

(n− 1)β̂MLE
α̂c+1

MLE
nβ̂MLE + c

nβ̂MLE
α̂−c

MLE =
(nβ̂MLE + c)

(
(n− 1)β̂MLE − (c + 1)

)
(n− 1)nβ̂2

MLE
α̂MLE

α̂Bc ≤
nβ̂MLE

nβ̂MLE + c + 1
α̂c+1

MLE
(n− 1)β̂MLE

(n− 1)β̂MLE − c
α̂−c

MLE =
(n− 1)nβ̂2

MLE(
nβ̂MLE + c + 1

)(
(n− 1)β̂MLE − c

) α̂MLE.

When α is unknown, we have∫ +∞

0
βc+1π(β|x)dβ =

(q2(x)− n log q1(x))n

τ(n)

∫ +∞

0
βn+c exp(−(q2(x)− n log q1(x))β)dβ

=
n + c

q2(x)− n log q1(x)

∫ +∞

0
βcπ(β|x)dβ.

Thus, by Proposition 3, we have

β̂Bc =
(

1 +
c
n

)
β̂MLE.

And when c0 = n
(

β0
β̂MLE

− 1
)

, we have β̂Bc0
= β0.

Remark 1. When β is unknown, we have

α̂Bc =
1− (c + 1)

∫ +∞
0 exp(−(c + 1)u)

(
1 + uβ̂MLE

)−n
du

1− c
∫ +∞

0 exp(−cu)
(
1 + uβ̂MLE

)−n
du

α̂MLE. (26)
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In particular, when c = 0, we get

α̂Bc = α̂E =

(
1−

∫ +∞

0
exp(−u)

(
1 + uβ̂MLE

)−n
du
)

α̂MLE. (27)

From (27), we know that α̂E < α̂MLE. By analyzing (26), when c > 0 gradually increases,
α̂Bc will increase firstly and then decrease, and finally α̂Bc will converge to α̂MLE. Let α0 be the real
value of scale parameter α, then when α̂E ≤ α0 ≤ α̂MLE, there exists c0 6= 0 such that α̂Bc0

= α0,
When α0 > α̂E, α̂E is the closest estimation among all α̂Bc . When α0 > α̂MLE, there exists c0 6= 0
such that α̂c0 is the closest estimation among all α̂Bc .

Theorem 5. Using Al-Bayyati’s loss function, we find that when β is known, α̂Bc(x|β) =
nβ+c

nβ+c+1 α̂MLE. When α is known, β̂Bc(x|α) = n+1+c
q2(x)−nlog α

. In both cases, there exist c1 and c2

such that α̂Bc1
(x|β) = α0 and β̂Bc2

(x|α) = β0, where α0 and β0 are the real value of scale and
shape parameter respectively.

Proof. When β is known, we have∫ α̂MLE

0
αc+1π(α|x, β)dα =

∫ α̂MLE

0
tc+1dPr(α ≤ t|x, β) =

nβ

nβ + c + 1
α̂c+1

MLE

and ∫ α̂MLE

0
αcπ(α|x, β)dα =

nβ

nβ + c
α̂c

MLE.

Then by Proposition 3, we have

α̂Bc(x|β) =
∫ α̂MLE

0 αc+1π(α|x, β)dα∫ α̂MLE
0 αcπ(α|x, β)dα

=
nβ + c

nβ + c + 1
α̂MLE.

When α is known, we get

∫ +∞

0
βc+1π(β|x, α)dβ =

(q2(x)− n log α)n+1

τ(n + 1)

∫ +∞

0
βn+c+1 exp(−(q2(x)− n log α)β)dβ

=
n + c + 1

q2(x)− n log q1(x)

∫ +∞

0
βcπ(β|x, α)dβ.

Thus by Proposition 3, we get

β̂Bc(x|α) = n + 1 + c
q2(x)− n log α

.

When β = β0, we have

α̂Bc(x|β0) =
nβ0 + c

nβ0 + c + 1
α̂MLE

Noting that if α̂MLE 6= α0, then α̂Bc0
(x|β0) = α0, where

c0 =
α0

α̂MLE − α0
− nβ0.

Hence either α̂MLE or α̂Bc0
(x|β0) is the true value of α.
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When α = α0, we have

β̂Bc(x|α0) =
n + 1 + c

q2(x)− n log α0
.

Hence we can take

c0 = (q2(x)− n log α0)α0 − (n + 1),

such that β̂Bc0
(x|α0) is the true value of β.

4.4. Bayesian Posterior Prediction

Let X̃ ∼ π(x̃; α, β) be the value that needs to be observed from Pareto distribution.
In the sense of posterior distribution (13), if the sample X is given, we can make relevant
posterior prediction of X̃. The discussion will be divided into the following three cases.

1. When neither α nor β are unknown, then we have

m(x̃|x) =
∫ +∞

0

∫ +∞

0
π(x̃; α, β)π(α, β|x)dαdβ

= −
∫ +∞

0

∫ +∞

0

n(q2(x)− n log q1(x))n

τ(n)
βnαnβ−1 exp(−q2(x)β)I[0≤α≤q1(x)] ·

βαβ

x̃β+1 I[x̃≥α]dαdβ

= −
∫ +∞

0

n(q2(x)− n log q1(x))n

τ(n)
exp(−q2(x)β)

βn+1

x̃β+1 dβ
∫ min(x̃,q1(x))

0
α(n+1)β−1dα

= −
∫ +∞

0

n(q2(x)− n log q1(x))n

τ(n)
exp(−q2(x)β)

βn+1

x̃β+1 ·
(min(x̃, q1(x)))(n+1)β

(n + 1)β
dβ

= −
∫ +∞

0

n(q2(x)− n log q1(x))n

τ(n)
βn exp(−(−(n + 1) log min(x̃, q1(x)) + log x̃ + q2(x))β)

(n + 1)x̃
dβ

=
n2(q2(x)− n log q1(x))n

(n + 1)x̃(−(n + 1) log(min(x̃, q1(x))) + log x̃ + q2(x))n+1 I[x̃>0]

=
n2(q2(x)− n log q1(x))n

(n + 1)x̃
N(x, x̃),

where

N(x, x̃) =

{
(q2(x)− n log x̃)−(n+1), 0 < x̃ < α̂MLE(x)
((n + 1) log q1(x) + log x̃ + q2(x))−(n+1), x̃ ≥ α̂MLE(x).

2. When α is known and β is unknown, we have

m(x̃|x, α) =
∫ +∞

0
π(x̃; α, β)π(β|x, α)dβ =

(n + 1)(q2(x)− n log α)n+1

x̃(−(n + 1) log α + log x̃ + q2(x))n+2 I[x̃>α].

3. When β is known and α is unknown, we have

m(x̃|x, β) =
∫ +∞

0
π(x̃; α, β)π(α|x, β)dα

=
n

n + 1
βα̂
−nβ
MLE(x) · x̃−β−1(min(x̃, α̂MLE(x)))(n+1)β I[x̃>0]

=
n

n + 1
β ·
{

α̂
−nβ
MLE(x) · x̃nβ−1, 0 < x̃ < α̂MLE(x)

α̂
β
MLE(x) · x̃−β−1, x̃ ≥ α̂MLE(x).

For the above posterior prediction distribution, given the prediction credibility k,
we can make Bayesian prediction inference in practical applications. The specific process
is as follows. From

∫ x̃U
x̃L

m(x̃|x)dx̃ = k, multiple sets of x̃L, x̃U can be got. By choosing
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appropriately the upper and lower bounds for X̃ such that x̃U − x̃L is smaller, then we can
obtain higher prediction accuracy.

5. Simulation

In real life, the proposed algorithm for target detection of maritime radar needs to
be tested and verified on sea clutter data. In order to determine the sea clutter better, it is
often necessary to estimate the parameters of sea clutter model.

Therefore, in this section, we will use the conclusion of Section 4 to estimate the
parameters of Pareto model of sea clutter and show the simulation results.

5.1. The Influence of Parameters on Sea Clutter

In this subsection, we show the effect of scale parameter α and shape parameter β on
sea clutter.

Figures 1 and 2 show the probability density curve of Pareto distribution with respect
to two parameters. It can be seen from the figures that when the scale parameter α is larger,
the density curve is even. The proportion of small clutter amplitude increases, and the
decline of the whole curve is gentle. As the shape parameter β becomes larger, the propor-
tion of small clutter amplitude increases significantly and becomes more concentrated, and
the tail descends faster. On the whole, for Pareto model, the energy is concentrated on the
small clutter. The trailing phenomenon is apparent. The essential reason is that when the
radar is grazing incident, the overall backscatter echo is relatively weak.
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Figure 1. The influence of the change of α probability distributions.
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Figure 2. The influence of the change of β on probability distributions.
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5.2. Various Types of Bayesian Estimation on Sea Clutter Models

In this subsection, we show the aforementioned Bayesian estimations of sea clutter.
In order to generate random samples of Pareto distribution with parameters α0 and

β0, we use the inverse distribution function and take the inverse transformation method to

extract Pareto samples: X = α0U−1

β0
, where U is the uniformly distributed random variable

on [0, 1]. We carry out numerical simulations where α0 = 0.5, 1, 1.5 and β0 = 0.5, 1, 1.5,
respectively. Using the inverse transformation method, we generate 1000 random samples
subject to Pareto distribution. To show the geometry of Pareto model of sea clutter, we take
(α0, β0) = (0.5, 1± 0.5) as the center and draw the unit geodesic circumference with dotted
line. We draw 64 uniformly distributed geodesics with directions θ0 = kπ

32 , k = 0, 1, · · · , 63
with solid line. See Figures 3 and 4.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.2

0.4

0.6

0.8

1

1.2

Figure 3. Sixty-four uniformly distributed geodesics centered on (0.5, 0.5).

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

1

1.5

2

2.5

3

3.5

4

Figure 4. Sixty-four uniformly distributed geodesics centered on (0.5, 1.5).

To describe the proximity between the estimated values of each group and the prede-
termined parameter value (α0, β0), we need to calculate the geodesic distance d{(α0, β0),
(α̂(x), β̂(x))}. If the distance between the estimated value and the predetermined parameter
value is close, we believe that the estimation is accurate. By (22), d

(
(α0, β0),

(
α̂(x), β̂(x)

))
∝

1 +
β0 β̂(x)(log α0−log α̂(x))2

2 +
(β0−β̂(x))

2

2β0 β̂(x)
. Hence the smaller | log α0 − log α̂| and |β0 − β̂| are,

the more accurate the estimation is.
Next we will make a comparative analysis of various types of Bayesian estimations.
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5.2.1. Mean Geodesic Estimation and the Common Bayesian Estimations

Case 1. Both scale parameter α and shape parameter β are unknown.
From Table 1 we know that |α̂E − α̂MGE| and |β̂E − β̂MGE| are less than 10−4, hence

α̂E and α̂MGE are almost equal. Since α̂E does not have explicit expression, α̂MGE can take
the place of α̂E and it also has more precise geometric explanation.

Table 1. Mean geodesic estimations and the common Bayesian estimations (α, β are not known).

(α, β)
(

α̂MLE, β̂MLE

) (
α̂Me, β̂Me

) (
α̂E, β̂E

) (
α̂MGE, β̂MGE

)
(0.5,0.5) (0.5024,0.5171) (0.5017,0.5169) (0.5014,0.5171) (0.5014,0.5171)
(0.5,1.0) (0.5001,1.0292) (0.4998,1.0288) (0.4997,1.0292) (0.4997,1.0292)
(0.5,1.5) (0.5003,1.5566) (0.5001,1.5561) (0.5000,1.5566) (0.5000,1.5566)
(1.0,0.5) (1.0053,0.4743) (1.0038,0.4742) (1.0032,0.4743) (1.0032,0.4743)
(1.0,1.0) (1.0009,1.0209) (1.0002,1.0205) (0.9999,1.0209) (0.9999,1.0209)
(1.0,1.5) (1.0001,1.4639) (0.9996,1.4634) (0.9994,1.4639) (0.9994,1.4639)
(1.5,0.5) (1.5033,0.4883) (1.5012,0.4881) (1.5002,0.4883) (1.5002,0.4883)
(1.5,1.0) (1.5003,1.0226) (1.4993,1.0223) (1.4988,1.0226) (1.4988,1.0226)
(1.5,1.5) (1.5010,1.4978) (1.5003,1.4973) (1.5003,1.4978) (1.5000,1.4978)

In most simulation tests, (α̂MGE, α̂MGE) is more accurate than (α̂MLE, α̂MLE) and
(α̂ME, α̂ME). Hence, in general the estimation MGE that we proposed is better than the
common Baysesian estimations.

Case 2. Either shape parameter β or scale parameter α is known.
When one parameter is known, the statistical manifold is degenerated. Hence taking

the Euclidean distance or the geodesic distance does not make much difference. This can
be seen in Tables 2 and 3.

Table 2. Mean geodesic estimations and the common Bayesian estimations (β is known).

β = β0 α̂Me(x|β0) α̂E(x|β0) α̂E(x|β0) α̂MGE(x|β0)

(0.5,0.5) 0.5024 0.5017 0.5014 0.5014
(0.5,1.0) 0.5001 0.4998 0.4996 0.4996
(0.5,1.5) 0.5003 0.5000 0.4999 0.4999
(1.0,0.5) 1.0053 1.0039 1.0033 1.0033
(1.0,0.5) 1.0009 1.0002 0.9999 0.9999
(1.0,1.5) 1.0001 0.9996 0.9994 0.9994
(1.5,0.5) 1.5033 1.5012 1.5003 1.5003
(1.5,1.0) 1.5003 1.4992 1.4988 1.4988
(1.5,1.5) 1.5010 1.5003 1.5000 1.5000

Table 3. Mean geodesic estimations and the common Bayesian estimations (α is known).

α = α0 β̂MLE(x|α0) β̂Me(x|α0) β̂E(x|α0) β̂MGE(x|α0)

(0.5,0.5) 0.5158 0.5162 0.5163 0.5161
(0.5,1.0) 1.0289 1.0295 1.0299 1.0294
(0.5,1.5) 1.5553 1.5563 1.5568 1.5560
(1.0,0.5) 0.4732 0.4735 0.4736 0.4734
(1.0,0.5) 1.0199 1.0206 1.0210 1.0205
(1.0,1.5) 1.4638 1.4647 1.4652 1.4645
(1.5,0.5) 0.4877 0.4881 0.4882 0.4880
(1.5,1.0) 1.0224 1.0231 1.0234 1.0229
(1.5,1.5) 1.4921 1.4931 1.4936 1.4928

Comparing Tables 2 and 3, when β is known, the accuracy of the estimations is 10−3

and when α is known, the accuracy of all kinds of estimations is 10−2. Therefore, the
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accuracy of various types of estimations will improve if β is known. This indicates that
scale parameter α is more easily obtained from samples in the sea clutter model and has
strong robustness. Shape parameter β is more sensitive than scale parameter α.

5.2.2. The Estimations under Al-Bayyati’s Loss Function

In this subsection, we give the simulation of various types of Bayesian estimations
when (α0, β0) = (1.5, 1.5).

Case 1. Both scale parameter α and shape parameter β are unknown.
When α and β are unknown, the variation trend of Bayesian estimation of the two

parameters under Al-Bayyati’s loss function with parameter c is shown in Figures 5 and 6,
respectively. When β is unknown, by (26)

α̂Bc =
1− (c + 1)

∫ +∞
0 exp(−(c + 1)u)

(
1 + uβ̂MLE

)−n
du

1− c
∫ +∞

0 exp(−cu)
(
1 + uβ̂MLE

)−n
du

α̂MLE.

Figure 5 shows the case when α̂E ≥ α0. Hence from the discussion in Remark 1, α̂E is
the closest estimate among all α̂Bc with the increasing of positive c.
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Figure 5. The variation of various Bayesian estimations of α with Al-Bayyati’s loss function parameter c.
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Figure 6. The variation of various Bayesian estimations of β with Al-Bayyati’s loss function parameter c.

When α is unknown, by Theorem 4

β̂Bc =
(

1 +
c
n

)
β̂MLE.

When c = 0, β̂Bc = β̂MLE = β̂E and when c0 = n
(

β0
β̂MLE

− 1
)

, β̂Bc0
= β0. As shown in

Figure 6, there always exists infinitely many c such that β̂c is closer than the common
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Bayesian estimations. And c0 = n
(

β0
β̂MLE

− 1
)

is nothing but the real value of parameter β.

These two figures also show that MGE are better than the common Bayesian estimations
when both of the parameters are unknown. Therefore, when α and β are unknown, to
obtain closer estimations, we are able to change c1 and c2 to make | log α0 − log α̂c1 | and
|β0 − β̂c2 | smaller and even obtain the minimum value. Through the previous discussions,
the choice of the best c1 depends on the inequality among real parameter α0, α̂MLE and α̂E.
The best c2 is c2 = n

(
β0

β̂MLE
− 1
)

.

Case 2. Either shape parameter β or scale parameter α is known.
When β or α is known, the variation trend of various Bayesian estimation of parameter

α or parameter β in Al-Bayyati’s loss function with parameter c is shown in Figure 7 or
Figure 8, respectively. When β = β0, by Theorem 5, we get

α̂Bc(x|β) = nβ + c
nβ + c + 1

α̂MLE.

If α̂MLE 6= α0, we have α̂Bc(x|β) = α0 when c = α0
α̂MLE−α0

− nβ. Hence either α̂MLE is the
true value of α, or we can take c0 = α0

α̂MLE−α0
− nβ such that α̂Bc0

(x|β), which is the true
value of α. This is shown in Figure 7.
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Figure 7. The variation of various Bayesian estimations of α with loss function parameter c when
β = β0.
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Figure 8. The variation of various Bayesian estimations of β with loss function parameter c when
α = α0.

When α = α0, by Theorem 5, we get

β̂Bc(x|α) = n + 1 + c
q2(x)− n log α

.
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If c = (q2(x) − nlog α)α0 − (n + 1), then β̂Bc(x|α) = β0. Hence we can take c0 =
(q2(x)− n log α)α0 − (n + 1) such that β̂Bc0

(x|α) is the true value of β. This is shown
in Figure 8.

In above two cases, there are infinitely many c such that α̂c(x|β) or α̂c(x|α) is closer
than the common Bayesian estimations.

5.3. Simulation of Posterior Predictive Distribution

In order to observe the simulation effect of the posterior prediction distribution,
according to the samples generated in Section 5.2, we drew the posterior prediction dis-
tribution of sea clutter and the real Pareto distribution π(x|α0, β0) of sea clutter where
(α0, β0) = (1.5, 1.5) for comparative analysis. See Figures 9–11.
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Figure 9. Posterior predictive distribution and underlying distribution (α and β are unknown).
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Figure 10. Posterior predictive distribution and underlying distribution (α = α0).
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Figure 11. Posterior predictive distribution and underlying distribution (β = β0).

Case 1. Scale parameter α and shape parameter β are unknown
The posterior prediction distribution of sea clutter is

m(x̃|x) = n2(q2(x)− n log q1(x))n

(n + 1)x̃
N(x, x̃), (28)

where

N(x, x̃) =

{
(q2(x)− n log x̃)−(n+1), 0 < x̃ < α̂MLE(x)
(−(n + 1) log q1(x) + log x̃ + q2(x))−(n+1), x̃ ≥ α̂MLE(x).

The image is shown in Figure 9. The blue curve represents the probability distribution
of sea clutter π(x|α0, β0), which gives positive values at the right side of the boundary
point x = α0. The orange curve represents the posterior prediction distribution of sea
clutter m(x̃|x), which changes continuously when x̃ > 0, but forms a cusp at x̃ = α̂MLE.
Compared with the two curves, the curve of the predicted distribution of sea clutter is
connected by a continuous curve and shifts slightly to the left. It is worth noting that
although m(x̃|x) tends to infinity as x̃ → 0+, it is not reflected in the image and can be
ignored in the actual calculation of the probability.

Case 2. α is known and β is unknown
The posterior prediction distribution of sea clutter is

m(x̃|x, α) =
(n + 1)(q2(x)− n log α)n+1

x̃((n + 1) log α + log x̃ + q2(x))n+2 I[x̃>α]. (29)

It can be seen from Figure 10 that the probability distribution π(x|α0, β0) (the blue curve)
and the posterior prediction distribution m(x̃|x, β) (the orange curve) can only obtain
positive values at the right side of the boundary point x = α0. There is a very high degree
of overlap, which means that when α is known, the prediction is going to be very accurate.
We come to the conclusion that more effective information can be obtained for parameter α
than β.

Case 3. β is known and α is unknown
The posterior prediction distribution of sea clutter is

m(x̃|x, β) =
n

n + 1
β ·
{

α̂
−nβ
MLE(x) · x̃nβ−1, 0 < x̃ < α̂MLE(x)

α̂
β
MLE(x) · x̃−β−1, x̃ ≥ α̂MLE(x).

(30)

The probability distribution π(x|α0, β0) (the blue curve) obtains a positive value at
the right side of boundary point x = α0. The posterior prediction distribution m(x̃|x, α)
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(the orange curve) changes continuously at x̃ > 0 and forms a cusp at x̃ = α̂MLE. By
comparing these two curves, the posterior prediction distribution shows a significant right
shift, and the simulation effect is not ideal near x̃ = α̂MLE. However, with the continuous
increasing of x̃, the two curves gradually coincide and the prediction accuracy becomes
higher. Therefore, when β is known and α is unknown, the larger the clutter amplitude is
to be observed, the higher the prediction accuracy will be.

To sum up, for the sea clutter model, the Bayesian posterior prediction results un-
der the above three conditions are ideal, and the prediction model can well reflect the
characteristics of sea clutter towing.

6. Conclusions and Future Work

In this paper, we presented systematic methods for Bayesian inference from geometric
viewpoints and applied it to Pareto model. We carried out simulations on sea clutter to
show the effectiveness.

For Pareto model, there does not exist general α-parallel prior. Using the Jeffreys prior
and by using geodesic distance and Al-Bayyati’s loss function, we obtain two new classes
of Bayesian estimations. We call the estimation in the sense of mean geodesic distance MGE
and it is proved that MGE has following advantages: it has the explicit expression, and is
more accurate than the common Bayesian estimations which has shown in our simulation.
We also prove that the estimations under the Al-Bayyati’s loss function are more accurate
than the common Bayesian estimations. Actually, there are infinitely many c such that the
new estimations are better. These results are important for the estimation of parameters
when studying sea clutter model. Finally we show that the Bayesian posterior prediction
results can well reflect the characteristics of sea clutter towing in any case.

In the future, more in-depth researches are worth discussing. From statistical view-
points, we can apply Bayesian inference for the Pareto model to non-linear regression
models [20]. From geometrical viewpoints, we expect to generalize our framework and
combine more tools from information geometry. We want to carry out more experiments
and applications in different fields.
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