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Tropical Geometry

The tropical semiring is R = (R ∪ {∞},⊕,⊙)

where a⊕ b = max(a, b) and a⊙ b = a + b.

Algebraic geometry studies zero sets of poly-
nomial equations. Tropical geometry focuses
on analogous structures defined by tropical
polynomials, i.e., ⊕

n

ant
n

where n ranges over a finite subset ofNm.

We can study more general formal expressions. For instance: tropical
division is given by a ⊘ b = a − b and quotients of tropical polynomi-
als are tropical rational functions. Tropical exponentiation corresponds
to usual multiplication, so tropical exponentiation makes sense for ar-
bitrary real exponents: in particular, tropical polynomials with arbitrary
real exponents are functions onR.

Neural Networks
Neural networksareawayofobtainingcom-
plicated families of functions by composing
linear maps and elementary nonlinear func-
tions.

Formally, a neural network is a function Rm →
Rℓ

σ ◦ Ld ◦ σ ◦ Li−1 ◦ · · · ◦ L1

where theLi areaffinemapsandσ(t) = max(0, t).

Any neural network can be written in terms
of tropical algebra: the nonlinear activation σ

is given by tropical addition; applying a linear
map can be expressed using tropicalmultiplica-
tion and exponentiation.

Neural networks are given by composing functions of the form
max(Ax + b, t) (applied component-wise on vectors), so we can rep-
resent neural networks tropically by finding a tropical expression for
max(Ax + b, t). For computational reasons, it is useful to restrict to ex-
pressions with nonnegative exponents.

WriteA+ = max(A, 0) andA− = max(−A, 0). Then we have

max(Ax + b, t) = max(A+x + b, A−x + t)− A−x,

and the RHS can be written as a vector of tropical rational functions in
x (with nonnegative real exponents), where the ith entry isbi ⊙
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We get a tropical expression for any neural network by composing such
expressions.

Linear Regions
Neural networks are locally given by lin-
ear functions. Intuitively, complicated neural
networks should have complicated representa-
tions in terms of linear maps. To quantify this
representation, we count the number of linear

regions of a neural network, i.e., the number of
maximal connected regions of the input space
on which the neural network is linear.

Any neural network with 1-dimensional output takes the form f ⊘ g
where f, g are tropical polynomials with real nonnegative exponents. If
f =

⊕
n anT

n and g =
⊕

n bnT
n then the activation of the neural network

at an input x is given by the difference
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The linear regions of the neural network correspond to regions where
both the numerator and the denominator are given by one of the terms
in the maxima.

Figure 1: By sampling points and classifying them by their Jacobians, we obtain a visualization of the linear regions. Note
that the deep set architecture is symmetric and this is reflected in its linear regions.

The linear regions of a tropical polynomial with
positive real exponents are polyhedra inRm and
the linear region of tropical quotients of such
function are unions of polyhedra. This means
that polyhedral geometry can be used to un-
derstand thegeometry of the linear regions.
Computatioanlly, the connection to polyhedral
geometry opens up the use of existing compu-
tational tools.

Estimating Linear Regions
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Figure 2: Linear regions of neural network in tropical form. The two curves show the number of linear regions versus num-
ber of monomials in tropical Puiseux rational functions in 3 variables (Left) and 4 variables (Right).

We compute the number of linear regions of
a neural network in two ways: (1) we make
use the extensive polyhedral geometry library in
OSCAR for symbolic computation for linear re-
gionsof tropical polynomials; (2)wecanclassify
points into linear regions by finding the Jaco-
bianmatrix at points in the input domain.

Hoffman Constants
To estimate the number of linear regions of a
neural network, we sample points in the in-
put domain and determine in which region
each point lies. To guarantee that each linear
region has been hit, we need to ensure the sam-
pling domain is large enough. At the same time,
we want the sampling domain to be as small as

possible for efficient sampling. In otherwords,
wewant thesmallestball fromwhichwecan
sample a point in each linear region.
Consider a nonempty polyhedron P (A, b) = {x ∈ Rn : Ax ≤ b}. Let
d(u, P (A, b)) denote the distance of u to the polyhedron measured un-
der an arbitrary norm ∥ ·∥ onRn. Then there exists a constantH(A) only
depending onA such that

d(u, PA,b) ≤ H(A)∥(Au− b)+∥

where x+ = max{x, 0} is applied coordinate-wise. The constant H(A)

is called the Hoffman constant ofA.

The Hoffman constant of a tropical rational function f = p⊘q is defined
as the maximal Hoffman constant over its linear regions. Let f̌ be the
min-conjugate of f . For any x ∈ Rn, we have the following inequality
relating the radius of sampling domain and Hoffman constant:

Rf(x) ≤ H(p⊘ q)max{p(x)− p̌(x), q(x)− q̌(x)}.
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(a) Illustration of the Hoffman constant of a tropical poly-
nomial f . The Hoffman constant H(f) is characterized
by the property that for any point x ∈ Rn, the ball/square
of radiusR intersecting all linear regions of f is bounded
byH(f) and the function value at x.
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(b) Illustration of symmetry of linear regions. The tropical
polynomial is symmetric under group action Z2, which is
equivalent to reflection along y = x. It suffices to count
linear regions inside the fundamental domain y ≤ x

which is shaded in yellow.

Symmetries
Symmetriesofneural networks inducesym-
metries of linear regions. We can leverage
these to estimate the number of linear regions
with less samples.

If a neural network is invariant under a group ac-
tion, then we can restrict sampling to a funda-
mental domain of this group action. For Sn-
invariantnetworks, this reducesthenumber
of samples needed by a factor of n!.
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