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Overview of persistent homology



Geometry v.s. Topology

Geometry is concerned with distances and rigid transformations.
However biological data rarely enjoy natural metrics, are often
noisy, high-dimensional and with only few useful coordinates.

Topology is concerned with qualitative geometric information. It
ignores geometric quantitative measurements but deals with
neighborhoods and connectivity of the objects. In particular, the
k-th homology group of a topological space X describes the
number of k-dim holes in X , such as connected components,
loops, and cavities.

But often the data is a point cloud. How to build an interesting
topological space on them to study its homology?



Simplicial complex

A k-simplex generalizes the notion of triangle to arbitrary dims: it
is the k-dim convex hull of k + 1 affinely-independent vertices, e.g.
point, segment, triangle, tetrahedron in 3D.

A simplicial complex K is a set of simplices that satisfies:

- Every face σ of a simplex from K is also in K . E.g. any edge
of a triangle in K is also in K .

- The non-empty intersection σ1 ∩ σ2 ̸= ∅ of any two simplices
in K is a face of both simplices. E.g. two intersecting
triangles necessarily share an edge or a vertex.



Examples

Figure 1: A simplicial complex.
Figure 2: Not valid.



Homology of a simplicial complex

Let K be a simplicial complex and the field F = Z/2Z.
Cp(K ) is the F -vector space generated by the p-simplices of K . An
element of Cp(K ) is a p-chain c =

∑
i∈I

σi . The boundary of c is

∂(c) =
∑

∂(σi ) where ∂(σ) is the sum of the (p − 1)-dim faces of
a p-dim simplex (w.r.t. addition mod 2, 1 + 1 = 0).

Zp is the set of p-cycles, i.e. p-chains with zero boundary. Bp is
the set of p-boundaries, i.e. the boundary of (p + 1)-chains.
Because ∂ ◦ ∂ = 0, we have Bp ⊆ Zp.



Homology of a simplicial complex

Then, the quotient group

Hp(K ) = Zp(K )/Bp(K )

is called the p-th simplicial homology group of K with Z/2Z
coefficients. The p-th Betti number of K is
βp(K ) = dim(Hp(K )).

Informally, a homology p-cycle (element of Hp(K )) can be
represented as a p-cycle up to p-boundaries of (p + 1) chains.
E.g., a 1-cycle up to the boundaries of a sum of triangles. Note:
the sum of two loops can represent a homology cycle.



Examples

Figure 3: A simplicial (alpha)
complex, with β0 = 1, β1 = 2,
β2 = 0.

Figure 4: Triangulated torus with
β0 = 1, β1 = 2, β2 = 1. Showing
two generators of H1(K ).



Persistent homology

The main idea of persistent homology in TDA is to study
qualitative features that persist across multiple scales of analysis,
e.g. in a nested family of simplicial complexes K1 ⊆ ... ⊆ Kn.
Instead of focusing on one particular scale to cluster points or
connect regions in the space (and how to choose the scale?), one
is interested in how the homology ”evolves” when varying some
parameter.

The resulting persistence module can be uniquely summarized
with persistence barcodes, thanks to the Structure Theorem
(explained later) from algebraic topology.



PH of data: what does it mean?

Data can be continuous or discrete ; images or point clouds.
Computing PH is a way to interpret the underlying phenomenon
that produced such data. The choice of data representation and
filtration is sometimes crucial to revealing different aspects of the
phenomenon. Examples:

A space can be filtered by the sublevel sets f −1(−∞, t] of a
function, e.g. curvature on a manifold, intensity in images,
density of points. Approximations: sample values on a point
cloud, graph vertices, or a grid, giving e.g. the clique or
cubical complexes.

Given a point cloud, one can build a simplicial complex
filtered by a parameter of proximity ϵ > 0. There are many
definitions, e.g. Rips, Čech, alpha complexes.



Birth and death
Intuitively, barcodes encode births and deaths of homology cycles.

A new homology cycle is ‘born’ when it is formed;
A homology cycle is ‘dead’ when it merges into an older one,
in particular, if it becomes a boundary. Fig from [LR21].



Birth and death

Formally, consider a sequence of subcomplexes K0 ↪→ · · · ↪→ Kn.
Let [c] ∈ H(Ki ) be a homology class (dimension omitted).

[c] is born at i if it is not in the image of H(Ki−1)→ H(Ki )

[c] is dead at j if

the image of [c] via H(Ki )→ H(Kj−1) is not in
Im(H(Ki−1)→ H(Kj−1))
but the image of [c] via H(Ki )→ H(Kj) is in
Im(H(Ki−1)→ H(Kj)).

Meaning: what “remains” of [c] at j − 1 is still different from what
remains of the classes present before i − 1; however at j it can no
more be distinguished from them.



Persistence modules

Question

Why does the geometric filtration finally produce a set of barcodes?

Consider a finite filtration of simplicial complexes:

K0 ↪→ K1 ↪→ K2 ↪→ · · · ↪→ Kn

Apply the homology functor H(·,F ) (F is a field!):

H(K0,F )
ϕ0−→ H(K1,F )

ϕ1−→ H(K2,F )
ϕ2−→ · · · ϕn−1−−−→ H(Kn,F )

The collection of homology vector spaces H(Ki ,F ), together with
vector space homomorphisms ϕi : H(Ki ,F )→ H(Ki+1,F ), is
called a Persistence Module.



Persistence modules

Define a F [t]-module as follows:

H(K ,F ) =
∞⊕
i=0

H(Ki ,F )

where H(Ki ,F ) = H(Kn,F ) for i ≥ n.
The action of t is given by

t · (x0, x1, x2, · · · ) = (0, ϕ0(x0), ϕ1(x1), ϕ2(x2), · · · )

H(K ,F ) is a graded module over a graded ring.



Structure theorem

Recall that for a finitely generated module M over a principal ideal
domain R, we have the following structure theorem (wiki page)

M ∼=
(⊕α

i=1 R

)
⊕
(⊕β

j=1 R/(rj)

)
F is a field so F [t] is P.I.D.;

Graded ideals of F [t] are homogeneous of form (tk);

H is finitely generated;

Structure theorem for persistence modules

H(K ,F ) ∼=
(⊕α

i=1 PaiF [t]

)
⊕
(⊕β

j=1 PbjF [t]/(tcj )

)
where P is shifting operator for gradings.

https://en.wikipedia.org/wiki/Structure_theorem_for_finitely_generated_modules_over_a_principal_ideal_domain


Structure theorem

The invariants ai , bj , cj are stored as sets of intervals, known as
barcodes:

{(ai ,∞), (bj , bj + cj), i = 1, · · · , α, j = 1, · · · , β}

Generalizations of the structure theorem:

Persistence modules of general index sets [Cha+16];

Structure of multidimensional persistence modules [CZ09];

Categorification of persistent homology [BS14];

and more...
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Data representation and filtration



Čech complexes

Let X = {x0, · · · , xn} be a finite set in the Euclidean space. Let
ϵ > 0 be a given parameter. The Čech complex is defined by

The vertex set (0-simplices) is X ;

A subset {x0, · · · , xk} ⊆ X spans a k-simplex iff the
intersection of balls ∩ki=0B(xi , ϵ) is not empty.

Figure 5: Image from Wikipedia



Rips complexes

Let (X , d) be a finite metric space, and ϵ > 0 be a given threshold.
The Vietoris-Rips (VR) complex is an abstract simplicial complex
defined according to the following rules:

The vertex set (0-simplices) is X ;
A subset {x0, · · · , xk} ⊆ X spans a k-simplex iff d(xi , xj) ≤ ϵ,
∀i , j ∈ {0, · · · , k}. i.e. The diameter diam({x0, · · · , xk}) ≤ ϵ.

We denote the VR complex by VRϵ(X , d).

Remark:

VR complex is a ‘lazy’ version of Čech: no need to check dimension
by dimension;

Some people prefer VRϵ(X , d) to indicate that a k-simplex is
spanned iff the diameter is no less than 2ϵ, so that the function
sending every finite metric space to its persistence diagram has unit
Lipschitz norm [Cha+09].



Rips complexes

Nice things about VR complexes:

VRϵ(X , d) ⊆ VRϵ′(X , d) if ϵ ≤ ϵ′;

A general construction for many types of data;

Clean stability results [Cha+09].

Not nice...

Explicit computation (homotopy type, homology groups...) is
difficult, even for a circle [AA17];

The size of a VR complex explodes easily.

Parameters to control the size of a VR filtration:

max edge length: set the maximal filtration threshold;

max dimension: set the dimension of a VR complex;

sparse: set the sparsification ratio [She13].



Clique complexes

Let G = (V ,E ) be a graph. A clique is a complete subgraph of G .
The collection of all cliques of G is called the clique complex of G .
Equivalently, the clique complex C(G ) of G can be constructed
according to the following rules:

The vertex set is V ;

A subset {v0, · · · , vk} ⊆ V spans a k-simplex iff vi , vj are
connected by an element in E for all i , j ∈ {0, · · · , k}.

Remark:

The size of a clique complex can also explode if the graph is not
sparse;

A VR complex is the clique complex of its 1-skeleton;

VR complexes and clique complexes are flag complexes, where the
existence of a face is completely determined by its edges.



Clique complexes

Let f : V → R be a function on the graph. Let
a0 < a1 < · · · < an. The sequence of sublevels

f (−∞, a0] ⊆ f (−∞, a1] ⊆ · · · ⊆ f (−∞, an]

induces sequence of subgraphs

G0 ⊆ G1 ⊆ · · · ⊆ Gn

which yields the sequence of clique complexes

C(G0) ⊆ C(G1) ⊆ · · · ⊆ C(Gn)

Example: Take f to be the degree map.



Alpha complexes

Let (X , d) be a finite metric space and ϵ > 0 a parameter. The
union of balls

⋃
x∈X

B(x , ϵ) can be decomposed using the

intersections of each ball with the Voronoi cell containing x ,
namely ⊔

x∈X
R(x , ϵ)

where R(x , ϵ) = B(x , ϵ) ∩ V (x). The alpha complex is then
[Ede95]

Alphaϵ(X , d) = {σ ⊆ X |
⋂
x∈σ

R(x , ϵ) ̸= ∅}



Alpha complexes

It is a subcomplex of the Delaunay complex as R(x , ϵ) ⊆ V (x).
Furthermore Alphaϵ(X , d) ⊆ Čechϵ(X , d).
Since the R(x , ϵ) are closed, convex and together cover the union,
the Nerve Theorem implies that Alphaϵ(X , d) is homotopy
equivalent to the union of the balls.

Figure 6: The alpha complex is isomorphic to the nerve of the cover.



Cubical complexes

A p-dim cube in Rd is a product of p non-degenerate intervals of
the form [k, k + 1] and d − p degenerate intervals [k , k].

Examples: points, edges, pixels, voxels in 3D.

Similarly to simplicial complexes, a p-dim cubical complex K
collects cubes of dim at most p and is closed by taking faces and
intersections [WCV12].



Images

Rectangular cubical complexes are the natural representation of
images. Let f : Rd → R be a function. Suppose it is sampled at
the centers of maximal cubes (pixels or voxels for d = 2 or 3).

Then the filtration value assigned to any lower-dim cube is the
minimal value of all maximal cubes containing it.

Example: an edge is assigned min f (v) among all voxels v
containing it.
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Persistence diagrams and computation



Boundary matrix

Consider a filtered simplicial complex K . Order its simplices
σ1, ..., σn by increasing filtration value.

Build the boundary matrix D as follows. Set D[i , j ] = 1 if σi
appears in the boundary ∂(σj) =

∑
k σik , D[i , j ] = 0 otherwise.

The lowest index of column D[:, j ] is the largest non-zero row
index and denoted by low(j). In other words, it indexes the younger
(i.e. last appearing) simplex that intervenes in the boundary of σj .



Naive algorithm

Computing the persistent homology of K consists in reducing D.
We perform a Gaussian elimination mod 2 of the columns from
left to right.

R ← D
for j = 1, ..., n do

while ∃j ′ < j such that low(j ′) = low(j) ̸= 0 do
R[:, j ]← R[:, j ] + R[:, j ′] mod 2

After addition, the new column gives the boundary of
σj +σj ′1 + ...+σj ′l . Zero columns are boundaries of (created) cycles.



Reduction

Figure 7 Figure 8: Reduced matrix for a filled triangle. Fig
from [EH09].



Pairing simplices

In the reduced matrix R:

- If low(j) = i > 0, then σj is a negative simplex that kills a
(p − 1)-cycle created by the positive simplex σi . Pairing them
leads to the interval [i , j).

- Otherwise R[:, j ] = 0 and σj is a positive simplex that
creates a p-cycle:

- either σj is paired to some σk with low(k) = j , leading to [j , k).
- or σj creates an essential p-cycle involved in the homology

group of Kn. We get [j ,+∞).

One can read inside a non-zero column R[:, j ] one representative
(p − 1)-cycle of the homology cycle created at i and destroyed at
j . It is the boundary of the sum of p-simplices induced by column
operations.



Improved algorithms

The naive algorithm is actually time- and memory-consuming. One
avoids keeping the whole matrix, so with gudhi and giotto-tda one
cannot retrieve representative p-cycles of persistence bars (not the
case for Eirene.jl or Ripserer.jl).

Much time can be saved by not reducing columns i that become
trivial afterwards and do not give rise to essential cycles of the
form [i ,+∞) but are paired with some j .

Instead, we rely on a much faster algorithm applying to
cohomology, with fewer row operations, and combined to a
”clearing” technique that appropriately ignores redundant
reductions.



Main packages

Gudhi : more in the spirit of mathematics [The15]

giotto-tda : machine learning spirit, compatible with
scikit-learn [Tau+21]

Ripser : ultra-fast computation of Rips persistence

Eirene.jl and Ripserer.jl : possibility to retrieve geometric
representatives from persistence bars

And many other packages.



Interpretation of the diagram

Points close to the diagonal are generally attributed to noise,
whereas those far from it are usually attributed to persistent
features (we’ll play with shapes and diagrams in the Jupyter
notebook).

Figure 9: Image from GUDHI



Warning 1

Figure 10: The smaller circle produces a less persistent lifetime than the
3 isolated points. Persistence measures a specific type of significance.
Figure from [RB21]



Warning 2

Figure 11: Holes and bubbles (PH1 and PH2). These two point clouds
have quite the same diagram!! Figure from [RB21]



Wasserstein distance
Let X = {x1, · · · , xn} and Y = {y1, · · · , ym} be two persistence
diagrams. How to measure the difference between X and Y ?

Idea: Let x∗ be the projection of x to the diagonal. Then consider
X ′ = X ∪ {y∗1 , · · · , y∗m} and Y ′ = Y ∪ {x∗1 , · · · , x∗n}. Range all
matchings x ←→ y , the difference is set to be the minimum of all
the costs

∑
∥x − y∥.

Figure 12: Image from GUDHI user manual



Wasserstein distance

Formally, let d be any q-norm on R2 (often q =∞). Let
1 ≤ p <∞. The p-Wasserstein distance between X and Y is
defined as

Wp(X ,Y ) =

(
inf
γ

∑
x∈X ′

d(x , γ(x))p

) 1
p

where γ ranges all bijections from X ′ and Y ′.
For p =∞, the Bottleneck distance is defined as

W∞(X ,Y ) = inf
γ

sup
x∈X ′
{d(x , γ(x))}



Stability

Bottleneck stability

Let M be a triangulable space and f , g :M→ R be two tame
functions. Let D(·) be the persistence diagram w.r.t levelset
filtration. Then W∞(D(f ),D(g)) ≤ ∥f − g∥∞.

Let F and G be two point clouds, and f = d(·,F ) and g = d(·,G )
be the distance functions, where d = ∥ · ∥∞.

The levelset filtration is ‘equal’ to the VR filtration;

By triangle inequality ∥f − g∥∞ ≤ H(F ,G ) where H is the
Hausdorff distance;



Vectorizations

Persistence diagrams are nonlinear and difficult for statistical
purposes.

Want to find feature maps sending PDs to vectors – vectorizations.

In giotto-tda we have

Persistence landscapes;

Betti curves;

Persistence images;

Persistence entropy;

...



Persistence landscapes

Let {bi , di}i∈I be a persistence diagram. For each barcode define a
function Λi (t) as

Λi (t) = [min{t − bi , di − t}]+
The k-th persistence landscape is a function λk(t) at each t taking
the k-th largest value of {Λi (t)}i∈I .
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Beyond persistent homology



Reeb graphs

Consider X a topological space and f : X → R a continuous
function. Define an equivalence relation ∼ on X where x ∼ y iff x
and y belong to the same connected component of a level set
f −1(t) where t ∈ R.

The Reeb graph is the quotient space X/ ∼ endowed with the
quotient topology. In other words, you “slice” the space like a
bread and then record the connectivity of the slices into a graph.



Reeb graphs

Figure 13: Reeb graph of the torus



Mapper

Mapper is a very popular method that extracts the topology of
data as a graph and constitutes a “pixelized” version of Reeb
graphs [CO18]. Mapper is powerful to interpret point clouds in
biological high-dim data [NLC11]. They are easy to compute and
are implemented in giotto-tda.

Parameters:

filter function f

cover the range of f with overlapping intervals

neighborhood size to determine “connected” points

Everything is about choosing them wisely, to reveal different
properties of the data.



Mapper

Figure 14: Building Mapper graph of a bitorus



Mapper

Figure 15: Sampling a
known distribution.

Figure 16: Mapper graphs for different
parameters. f = density.



Mapper in biology

Figure 17: Mathematical discovery of a biologically meaningful subgroup
(ER+) of breast cancers with Mapper! [NLC11]



UMAP

UMAP, introduced in [MHM20], is an extremely popular tool
among cell biologists for visualizing point cloud data spanned in a
high-dim space, e.g. single-cell data.

UMAP was theoretically inspired from TDA (“fuzzy simplicial
sets”), but in practice the algorithm is part of the class of
k-neighbour based graph learning algorithms, e.g. Laplacian
Eigenmaps, Isomap and t-SNE (also used in biology).

The idea is to find a 2D representation of the point cloud by
optimizing some objective function that preserves the topological
structure of the k-neighbor graph.



UMAP
From [Dia+19].



Multidimensional persistence

Figure 18: Example of a bifiltration. Image taken from [CZ09].



Multidimensional persistence

For u, v ∈ Nn, say u ≺ v if ui ≤ vi for i = 1, · · · , n;

A multifiltration of simplicial complexes is a family {Ku}u∈Nn

such that Ku ⊆ Kv if u ≺ v ;

Similar to the one-dimensional case, we can define the
persistence module as the collection of homology vector spaces
H(Ku,F ) and homomorphisms ϕu→v : H(Ku,F )→ H(Kv ,F ),
and assign a true F [t1, · · · , tn]-module structure to

H(K ,F ) =
⊕
u∈Nn

H(Ku,F )



Multidimensional persistence

Unlike the one-dimensional case, the structure of
multidimensional persistence module is complicated;

No complete discrete invariant exists for multidimensional
persistence module;

The rank invariant is a function ρH : Nn × Nn → N sending
(u, v) to the rank of the map ϕu→v ;

Software for visualizing the rank invariant – RIVET [LW15].



Zigzag persistence

Normal persistence requires a nested family of subspaces

K0 ↪→ K1 ↪→ K2 ↪→ · · · ↪→ Kn

Question

What if Ki ⊈ Kj ?

Example 1: K1, · · · ,Kn are different point clouds sampled from
the same space X .

Example 2: K1, · · · ,Kn are small random patches from a large
image X .



Zigzag persistence

The idea of zigzag persistence is to add intermediate objects to
connect Ki in the following way:

On homology level we have

H(K0,F )→ H(K0 ∪ K1,F )← H(K1,F )→ · · · ← H(Kn,F )



Zigzag persistence

The structure of zigzag module is related to the
representation of An-type quiver;

A zigzag module is completely determined by its barcodes;

Software for computing zigzag persistence – Javaplex [TVA14]
and Dionysus [Mor].
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